Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T21:40:04.907Z Has data issue: false hasContentIssue false

Theory of Thermal Conductivity of Micro- and Nano-structured Materials

Published online by Cambridge University Press:  31 January 2011

Gyaneshwar P. Srivastava*
Affiliation:
[email protected]@excc.ex.ac.uk, University of Exeter, School of Physics, Stocker Road, Exeter, Devon, EX4 4QL, United Kingdom, +44 1392 264080, +44 1392 264111
Get access

Abstract

We provide a brief discussion of the Boltzmann equation derived Callaway-Debye relaxation time theory of lattice thermal conductivity of micro- and nano-structured materials (of size greater than 20 nm. Incorporated in the theory is a comprehensive treatment of three-phonon scattering events. Using numerical results from this theory, we present a quantitative investigation of the magnitude and temperature variation of the conductivity of CVD polycrystalline diamond films, suspended GaAs nanostructures, Si nanowires, and AlN micro- and nano-ceramics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Callaway, J. Phys. Rev. 113, 1046 (1959).Google Scholar
[2] Srivastava, G. P. The Physics of Phonons (Adam Hilger, Bristol, 1990).Google Scholar
[3] Ziman, J. M. Electrons and Phonons (Clarendon Press, Oxford, 1960)Google Scholar
[4] Klemens, P. G. Proc. Phys. Soc. 68 A 1113 (1955).Google Scholar
[5] Parrott, J. E. Rev. Int. Hautes Tempér, Réfract, Fr., 69, 393 (1979).Google Scholar
[6] G, G. Leibfried and Schlömann, E., Nachr. Akad. Wiss. Göttingen Math. Phys. Kl II(a) 4, 71 (1954).Google Scholar
[7] Hamilton, R.A.H. and Parrott, J. E. Phys. Rev. 78, 1284 91969).Google Scholar
[8] Srivastava, G. P. Phil. Mag. 34, 795 (1976).Google Scholar
[9] Vandersande, J. W. Phys. Rev. B 15, 2355 (1977).Google Scholar
[10] Morelli, D. T. Uher, C. and Robinson, C. J. Appl. Phys. Lett. 62, 1085 (1993).Google Scholar
[11] Barman, S. and Srivastava, G. P. Phys. Rev. B 73, 073301 (2006).Google Scholar
[12] Barman, S. and Srivastava, G. P. Phys. Rev. B 73, 205308 (2006).Google Scholar
[13] Fon, W. Schwab, K. C. Worlock, J. M. and Roukes, M. L. Phys. Rev. B 66, 045302 (2002).Google Scholar
[14] Holland, M. G. Phys. Rev. 134, A471 (1964).Google Scholar
[15] Walkauskas, S. G. Broido, D. A. Kempa, K. and Reinecke, T. L. J. Appl. Phys. 85, 2579 (1999).Google Scholar
[16] Voltz, S. G. and Chen, G. Appl. Phys. Lett. 75, 2056 (1999).Google Scholar
[17] Murphy, P.G. and Moore, J. E. Phys. Rev. B 76, 155313 (2007).Google Scholar
[18] Li, D. Wu, Y. Kim, P. Shi, L. Yang, P. and Majumdar, A. Appl. Phys. Lett. 83, 2934 (2003).Google Scholar
[19] Slack, G. A. Tanzilli, R. A. Pohl, R. O. and Vandersande, J. W. J. Phys. Chem. Solids 48, 641 (1987).Google Scholar
[20] Watari, K. Nakano, H. Urabe, K. Ishizaki, K. Cao, S. and Mori, K. J. Mater. Res. 17, 2940 (2002).Google Scholar
[21] Jackson, T. B. Virkar, A. V. More, K. L. Dinwiddie, R. B. and Cutler, R. A. J. Am. Ceram. Soc. 80, 1421 (1997).Google Scholar
[22] AlShaikhi, A. and Srivastava, G. P. J. Appl. Phys. 103, 83554 (2008).Google Scholar
[23] Qiu, J. Hotta, Y. Watari, K. Mitsuishi, K. J. Am. Ceram. Soc. 89, 377 (2006).Google Scholar
[24] Panchula, M. L. and Ying, J. Y. J. Am. Ceram. Soc. 86, 1121 (2003).Google Scholar
[25] AlShaikhi, A. and Srivastava, G. P. J. Phys. Condens. Matter 21, 174207 (2009).Google Scholar