Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T05:39:49.300Z Has data issue: false hasContentIssue false

Theory of the Gain Characteristics of InGaN/AlGaN QD Lasers

Published online by Cambridge University Press:  15 February 2011

A.D. Andreev
Affiliation:
A.F. loffe Physico-Technical Institute of Russian Academy of Sciences, Polytechnicheskaya 26, St.-Petersburg 194021, Russia; E-mail: [email protected]
E.P. O'Reilly
Affiliation:
Department of Physics, University of Surrey, Guildford GU2 5XH, UK
Get access

Abstract

We present a theoretical analysis of the gain characteristics of InGaN/AlGaN quantum dot (QD) lasers. We calculate the elastic strain distribution caused by the lattice mismatch between the QD and the barrier using an original method which takes into account the hexagonal symmetry of the structure's elastic properties. The method is based on an analytical derivation of the Fourier transform of the strain tensor. The proposed approach is combined with a plane-wave expansion method to calculate the carrier spectrum and wave functions. The many-body gain of a laser containing a periodic array of QDs is calculated using the Padé approximation. We show that band gap reduction and the Coulomb enhancement of the interband transition probability can significantly modify the gain spectrum in InGaN/AlGaN QD lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Fasol, G., The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer-Verlag, Berlin, 1997)Google Scholar
2. Widmann, F., Daudin, B., Feuillet, G., et.al., J. of Appl. Phys,, 83, 7618 (1998)Google Scholar
3. Daudin, B., Widmann, F., Feuillet, G., et.al., Phys. Rev. B, 56, R7069 (1997)Google Scholar
4. Hirayama, H., Tanaka, S., Ramvall, P., Aoyagi, Y., Appl. Phys. Lett., 72, 1736 (1998)Google Scholar
5. Im, J.S., Heppel, S., Kollmer, H., et.al., J. of Grystal Growth, 190, 597 (1998)Google Scholar
6. Narukawa, Y., Kawakami, Y., Funato, M., et.al., Appl. Phys. Lett., 70, 981 (1997)Google Scholar
7. Grundman, M., Stier, O., Bimberg, D., Phys. Rev. B, 52, 11969 (1995)Google Scholar
8. Cusack, A., Briddon, P. R., Jaros, M., Phys. Rev. B, 54, R2300 (1996)Google Scholar
9. Downes, J.R., Faux, D.A., O'Reilly, E.P., J. Appl. Phys., 81, (10), 6700 (1997)Google Scholar
10. Andreev, A.D., Downes, J.R., Faux, D.A., O'Reilly, E.P., subm. to J. Appl.Phys.Google Scholar
11. Andreev, A.D, O'Reilly, E.P., to be subm. to Phys.Rev. B.Google Scholar
12. Wright, A.F., J. Appl. Phys., 82, 2833 (1997)Google Scholar
13. Tansley, T.L., Goldys, E.M., Godlevski, H., et.al., in GaN and Related Materials, edited by Pearton, S.J. (Gordon and Breach Science Publish., New York, 1997), p.268 Google Scholar
14. Bir, G.L., Pikus, G.E., Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1972)Google Scholar
15. Chuang, S.L., Chang, C.S., Phys. Rev. B, 54, 2491 (1996)Google Scholar
16. Martin, G., Botchkarev, A., Rockett, A., Morcos, H., Appl. Phys. Lett., 68, 2541 (1996)Google Scholar
17. Yeo, T.C., Chong, T.C., Li, M.F., J. Appl.Phys., 83, 1429 (1998)Google Scholar
18. Chong, T.C., Yeo, Y.C., Li, M.F., Fan, W.J., MRS Proc. vol. 482 (1997)Google Scholar
19. Haug, H., Koch, S.W., Phys. Rev. A, 39, 1887 (1989)Google Scholar
20. Chow, W.W., Koch, S.T., Sargent, M. III, IEEE J. of Quantum Electronics, 26, 1052 (1990)Google Scholar
21. Rees, P., Cooper, C., Blood, P., et.al., Electron. Lett., 31, 1149 (1995)Google Scholar
22. Andreev, A.D., in In-plane Semiconductor Lasers: from Ultraviolet to Mid-infrared, SPIE Proc., 3284, 151 (1998)Google Scholar