Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T03:17:09.707Z Has data issue: false hasContentIssue false

Theory of Defects in Wide-Band-Gap Semiconductors

Published online by Cambridge University Press:  26 February 2011

Chris G Van de Walle
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Jörg Neugebauer
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

We discuss the application of state-of-the-art first-principles calculations to the problem of defects, impurities, and doping levels in semiconductors. Since doping problems are of particular relevance in wide-band-gap materials, we focus here on studies of ZnSe and GaN. For ZnSe, we discuss our latest insights in the influence of compensation and dopant solubility on the experimentally observed limitation of the free carrier concentration in p-type ZnSe. For GaN, we focus on the role of native defects in doping or compensation of the material, with particular emphasis on the n-type conductivity of as-grown GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Baraff, G.A. and Schlüter, M., Phys. Rev. Lett. 41, 892 (1978).Google Scholar
2 Bernholc, J., Lipari, N.O., and Pantelides, S.T., Phys. Rev. Lett. 41, 895 (1978).Google Scholar
3 Baraff, G.A. and Schlüter, M., Phys. Rev. B 28, 2296 (1983).Google Scholar
4 Bar-Yam, Y. and Joannopoulos, J.D., Phys. Rev. Lett. 52, 1129 (1984).Google Scholar
5 Car., R. Kelly, P.J., Oshiyama, A., and Pantelides, S.T., Phys. Rev. Lett. 54, 360 (1985).Google Scholar
6 Overhof, H., Schemer, M., and Weinert, C.M., Mat. Sci. Forum 38–41, 293 (1989).Google Scholar
7 Van de Walle, C.G. and Blochl, P.E., Phys. Rev. B 47, 4244 (1993).Google Scholar
8 Zhang, S.B. and Northrup, J.E., Phys. Rev. Lett. 67, 2339 (1991).Google Scholar
9 Laks, D.B., Van de Walle, C.G., Neumark, G.F., and Pantelides, S.T., Phys. Rev. Lett. 66, 648 (1991).Google Scholar
10 Northrup, J.E. and Zhang, S.B., Phys. Rev. B 47, 6791 (1993).Google Scholar
11 Van de Walle, C.G., Laks, D.B., Neumark, G.F., and Pantelides, S.T., Phys. Rev. B47, 9425 (1993).Google Scholar
12 Neugebauer, J. and Van de Walle, C.G., Phys. Rev. B 50, 8067 (1994).Google Scholar
13 Chadi, D.J. and Troullier, N., Physica B 185, 128 (1993).Google Scholar
14 Cheong, B.-H., Park, C.H., and Chang, K.J., to be published.Google Scholar
15 García, A. and Northrup, J.E., Phys. Rev. Lett. 74, 1131 (1995).Google Scholar
16 Watkins, G.D., in Defect Control in Semiconductors, edited by Sumino, K. (Elsevier Science Publishers B.V., Amsterdam, 1990), p. 933.Google Scholar
17 Qian, G.-X., Martin, R.M., and Chadi, D.J., Phys. Rev. B 38, 7649 (1988); N.Chetty and R.M. Martin, Phys. Rev. 45 6089 (1992).Google Scholar
18 Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).Google Scholar
19 Hamann, D.R., Schlüter, M., and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979).Google Scholar
20 Troullier, N. and Martins, J.L., Phys. Rev. B 43, 1993 (1991).Google Scholar
21 Laks, D.B., Van de Walle, C.G., Neumark, G.F., Blochl, P.E., and Pantelides, S.T., Phys. Rev. B 45, 10965 (1992).Google Scholar
22 Stumpf, R. and Schemer, M., Computer Phys. Commun. 79, 447 (1994).Google Scholar
23 Neugebauer, J., to be published.Google Scholar
24 Neugebauer, J. and Van de Walle, C.G., in Diamond, SiC and Nitride Wide Bandgap Semiconductors, edited by Carter, C.H. Jr., Gildenblat, G., Nakamura, S., and Nemanich, R.J., Materials Research Society Symposia Proceedings, Vol. 339 (Materials Research Society, Pittsburgh, Pennsylvania), p. 687.Google Scholar
25 Laks, D.B., Van de Walle, C.G., Neumark, G.F., and Pantelides, S.T., Appl. Phys. Lett. 63, 1375 (1993).Google Scholar
26 Van de Walle, C.G. and Laks, D.B., Solid State Communications 93, 447 (1995).Google Scholar
27 We estimated that relaxation energies would not exceed 1 eV.Google Scholar
28 Ando, K., Kawaguchi, Y., Ohno, T., Ohki, A., and Zembutsu, S., Appl. Phys. Lett. 63, 191 (1993).Google Scholar
29 Hauksson, I.S., Simpson, J., Wang, S.Y., Prior, K.A., and Cavenett, B.C., Appl. Phys. Lett. 61, 2208 (1992).Google Scholar
30 Murdin, B.N., Cavenett, B.C., Pidgeon, C.R., Simpson, J., Hauksson, I.S., and Prior, K.A., Appl. Phys. Lett. 63, 2411 (1993).Google Scholar
31 Marshall, T., Physica B 185, 433 (1993).Google Scholar
32 Nishikawa, Y., Ishikawa, M., Saito, S., and Hatakoshi, G., Jpn. J. Appl. Phys. 33, L361 (1994).Google Scholar
33 Ito, S., Ikeda, M., and Akimoto, K., Jpn. J. Appl. Phys. 31, L1316 (1992).Google Scholar
34 Shahzad, K., Khan, B.A., Olego, D.J., and Cammack, D.A., Phys. Rev. B 42, 11 240 (1990).Google Scholar
35 Mensz, P.M., J.Cryst. Growth, 138, 697 (1994).Google Scholar
36 Fan, Y., Han, J., He, L., Gunshor, R.L., Brandt, M.S., Walker, J., Johnson, N.M., and Nurmikko, A.V., Appl. Phys. Lett. 65, 1001 (1994).Google Scholar
37 Kwak, K.W., Vanderbilt, D., and King-Smith, R.D., submitted to Phys. Rev. B.Google Scholar
38 Qiu, J., DePuydt, J.M., Cheng, H., and Haase, M.A., Appl. Phys. Lett. 59, 2992 (1991).Google Scholar
39 Kuo, L.H., Salamanca-Riba, L., DePuydt, J.M., Cheng, H., and Qiu, J., Appl. Phys. Lett. 63, 3197 (1993).Google Scholar
40 DePuydt, J.M., private communication.Google Scholar
41 Neugebauer, J. and Van de Walle, C.G., to be published.Google Scholar
42 Neugebauer, J. and Van de Walle, C.G., in Proceedings of the 22th International Conference on the Physics of Semiconductors, Vancouver, 1994 (World Scientific Publishing Co Pte Ltd., Singapore), p. 2327.Google Scholar