Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T03:05:25.279Z Has data issue: false hasContentIssue false

Theory and Calculation of the Thermal Conductivity of Amorphous Si

Published online by Cambridge University Press:  28 February 2011

Joseph L. Feldman
Affiliation:
Complex Systems Theory Branch, Naval Research Laboratory, Code 4690, Washington D.C. 20375-5000
Philip B. Allen
Affiliation:
Department of Physics, State University of New York, Stony Brook, NY 11794-3800
Get access

Abstract

Vibrations of amorphous Si are represented by three available 216 atom models and the forces of Stillinger and Weber. It is shown how the Kubo formula for thermal conductivity can be evaluated “exactly” assuming harmonic vibrations, making only finite system-size errors. The results are rather insensitive to the particular model for the coordinates of the atoms and support a “shunt resistor model” for the thermal conductivity which fits data for glasses very well.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Some recent papers with references to earlier work are Graebner, J.E., Golding, B., and Allen, L.C., Phys. Rev. B34, 5696 (1986); C.C. Yu and J.J. Freeman, Phys. Rev. B36, 7620 (1987); V.G. Karpov and D.A. Pashin, Sov. Phys.-JETP 61, 1308 (1985) [Russ. orig.-Zh. Eksp. Teor. Fiz 88, 2212 (1985)]; E. Akkermans and R. Maynard, Phys. Rev. B32, 7850 (1985); M. Randeria and J.P. Sethna, to be published.Google Scholar
2. Kittel, C., Phys. Rev. 75, 972 (1948).Google Scholar
3. Anderson, P.W., Phys. Rev. 109, 1492 (1958).Google Scholar
4. Jackle, J., Sol. State Commun. 39, 126 (1981).Google Scholar
5. Kubo, R., Yokota, M., and Nakajima, S., J. Phys. Soc. Japan 12, 1203 (1957).Google Scholar
6. Allen, P. B. and Feldman, J. L., Phys. Rev. Lett., to be published.Google Scholar
7. Hardy, R.J., Phys. Rev. 132, 168 (1963). We slightly generalized this work to include more than one atom per unit cell. We also omit certain terms in the heat current operator which give no contribution in the small W limit.CrossRefGoogle Scholar
8. Greenwood, D.A., Proc. Phys. Soc. (London) 71, 585 (1960).Google Scholar
9. Wooten, F., Winer, K., and Weaire, D., Phys. Rev. Lett. 54 1392 (1985).Google Scholar
10. Stillinger, F.H. and Weber, T.A., Phys. Rev. B31, 5262 (1985 CrossRefGoogle Scholar
11. Li, X.-P., Chen, G., Allen, P.B., and Broughton, J.Q., Phys. Rev. B38, xxxx (1988).Google Scholar
12. Wooten, F., private communication.Google Scholar
13. Kluge, M.D., Ray, J.R., and Rahman, A., Phys. Rev. B36, 4234 (1987-I)Google Scholar
14. Broughton, J.Q. and Li, X.-P., Phys. Rev. B35, 9120 (1987).Google Scholar
15. Broughton, J.Q., private communication.Google Scholar
16. Cahill, D.G., H.E. Fischer, Klitsner, T., Swartz, E.T., and Pohl, R.O., J, Vac. Sci. Tech., in press.Google Scholar
17. Cahill, D.G. and Pohl, R.O., Phys. Rev. B37, 8773 (1988).Google Scholar
18. Biswas, R., Bouchard, A.M., Kamitakahara, W.A., Grest, G.S., and Soukoulis, C.M., Phys. Rev. Lett. 60, 2280 (1988).Google Scholar
19. Hunklinger, S. and Piche, L., Solid State Commun. 17, 1189 (1975); B. Golding, J.E. Graebner, and R.J. Schutz, Phy. Rev. B14, 1660 (1976).Google Scholar
20.See for example GGA in Ref. 1.Google Scholar
21. Slack, G.A., in Solid State Physics, edited by Ehrenreich, H., F. Seitz, and D. Turnbull (Academic, New York, 1979) v. 34 p. 1.Google Scholar
22.An early use is by Jones, D.P., Thomas, N., and Phillips, W.A., Philos. Mag. B38, 271 (1978).Google Scholar
23. Auerbach, A. and Allen, P.B., Phys. Rev. B29, 2884 (1984).CrossRefGoogle Scholar