No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
Experiments on the reactivity of CO for Au nanoclusters have shown a local maximum in the adsorption of the first molecule for Au18 and its cation, whereas O2 adsorption has been observed in Au18-1. In this work we present a theoretical analysis of the preferential sites for the adsorption of the CO and O2 molecules on neutral and single ionized Au18 clusters with C2v symmetry, which has been shown both theoretical and experimentally, to be the most stable isomer of the Au18 cluster. We report the results of the calculation for the binding energies of CO and O2 for non-equivalent sites and compare with the available experimental values. The oxidation mechanism is studied in first instance by the subsequent adsorption of the CO on the O2 molecule, which was previously adsorbed on the respective gold cluster. The study is based on a DFT-GGA calculation with the PW91 functional.