Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T03:09:03.823Z Has data issue: false hasContentIssue false

Theoretical analysis of <0001> tilt grain boundaries in GaN at the atomic scale

Published online by Cambridge University Press:  11 February 2011

Jun Chen
Affiliation:
Laboratoire Universitaire de Recherche Scientifique d'Alençon, Institut Universitaire de Technologie, 61250 Damigny, France.
Pierre Ruterana
Affiliation:
Laboratoire d'Etude et de Recherche sur les Matériaux, FRE 2149 CNRS, Institut des Sciences de la Matière et du Rayonnement, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex, France.
Gérard Nouet
Affiliation:
Laboratoire d'Etude et de Recherche sur les Matériaux, FRE 2149 CNRS, Institut des Sciences de la Matière et du Rayonnement, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex, France.
Get access

Abstract

Epitaxial layers of GaN contain a very high density of threading dislocations. In the first stage of growth they may form low and high angle grain boundaries. Energetic calculations of <0001> tilt grain boundaries have been performed with the Stillinger-Weber potential modified to take into account the wrong bonds Ga-Ga and N-N. The variation of the energy has been calculated as a function of the rotation angle. Two minima exist with special atomic structures based on a limited number of structural units. They are used to describe the other misorientations in terms of dislocation cores.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Jpn. J. Appl. Phys. 34, 1797 (1995)Google Scholar
2. Ning, X. J., Chien, F.R., Pirouz, P., Wang, J.W. and Khan, M.A, J. Mater. Sci. 3, 580 (1996)Google Scholar
3. Potin, V., Ruterana, P., Nouet, G., Pond, R.C. and Morkoç, H., Phys. Rev. B 61, 5587 (2000)Google Scholar
4. Kohyama, M., Simul, Modelling. Mater. Sci. Eng. 10, R31 (2002)Google Scholar
5. Sarrazit, F., Stepantsov, E.A., Olsson, E., Claeson, T., Bondarenko, V.l., Pond, R.C. and Kiselev, N.A., Philos. Mag. K76, 633 (1997)Google Scholar
6. Chen, J., Ruterana, P. and Nouet, G., Mater. Sci. Eng. B82, 117 (2001)Google Scholar
7. Béré, A. and Serra, A., Phys. Rev. B65, 205323 (2002)Google Scholar
8. Chen, J., Nouet, G and Ruterana, P., Phys. Stat. Sol. (b) 228, 411 (2001)Google Scholar
9. Béré, A. and Serra, A., Interf. Sci. 9, 149 (2001)Google Scholar
10. Eisner, J., Jones, R., Sitch, P.K, Porezag, V.D., Elstner, M., Frauenheim, Th., Heggie, M.I., Oberg, S., and Briddon, P.R., Phys. Rev. Lett. 79, 3672 (1997)Google Scholar
11. Wright, A.F. and Grossner, U., Appl. Phys. Lett. 73, 2751 (1998)Google Scholar
12. Stampil, C. and Van de Walle, C.G., Phys. Rev. B 57, RI5 052 (1998)Google Scholar
13. Chislom, J.A. and Bristowe, P.D., J. Phys.: Condens. Matter. 11, 5067 (1999)Google Scholar
14. Keating, P.N., Phys. Rev. 145, 637 (1966),Google Scholar
15. Baraff, G. A., Kane, E.D. and Schlüter, M., Phys. Rev. B21, 5665(1980)Google Scholar
16. Stillinger, F.H. and Weber, T.A, Phys. Rev. B 31, 5262 (1985),Google Scholar
17. Tersoff, J., Phys. Rev. B 37, 6991 (1988); B38, 9902 (1988); B39, 5566 (1989); Phys. Rev. Lett., 61, 2879 (1988)Google Scholar
18. Aïchoune, N., Potin, V., Ruterana, P., Hairie, A., Nouet, G. and Paumier, E., Comput. Mater. Sci. 17, 380(2000)Google Scholar
19. Polian, A., Grimsditch, M. and Grzegory, J., J. Appl. Phys. 76, 3343 (1996)Google Scholar
20. Holt, D.B., J. Phys. Chem. Solids 30, 1297 (1969)Google Scholar
21. Northrup, J.E., Neugebauer, J. and Romano, L. T., Phys. Rev. Lett. 77, 103 (1996)Google Scholar
22. Wetzel, J.T., Levi, A.A., Smith, D.A., Trans. Jpn. Inst. Met. Suppl. 27, 1060 (1986)Google Scholar
23. Verlet, L., Phys. Rev. 159, 98 (1967)Google Scholar
24. Pond, R.C. and Vlachavas, D.S., Proc. Roy. Soc. London A 386, 95 (1983)Google Scholar
25. Oba, F., Tanaka, I., Nishitani, S.R., Adachi, H., Slater, B. and Gay, D. H., Philos. Mag. A 80, 1567(2000)Google Scholar
26. Vitek, V., Crystal Lattice Defects, 5, 1(1974)Google Scholar
27. Vitek, V., Sutton, A.P., Smith, D.A. and Pond, R.C., Grain Boundary Structure and Kinetics, Ed. Balluffi, R.W., ASM, Metals Park, OH, 115(1980)Google Scholar
28. Béré, A and Serra, A., Phys. Rev. B 66, 085330(2002)Google Scholar