Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T06:26:54.930Z Has data issue: false hasContentIssue false

Texture Formation and Superconducting Properties of YBa2Cu3Ox Thin Films Prepared by Solution Process on LaAlO3 Single Crystals

Published online by Cambridge University Press:  18 March 2011

Y.-A Jee
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
B. Ma
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
M. Li
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
B. L. Fisher
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
U. Balachandran
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
Get access

Abstract

YBa2Cu3Ox (YBCO) thin films were fabricated by the trifluoroacetate (TFA) process on LaAlO3 (LAO) single crystal in an argon atmosphere. We focused on lowering the heat treatment temperature by decreasing the oxygen partial pressure to adopt the TFA process to metallic substrates. YBCO phase formation was checked by measuring Tc with the inductive method. In-plane and out-of-plane film textures were evaluated by phi-scan and omega scan, respectively. Raman spectroscopy was used to estimate grain connectivity, in-plane texture, and second-phase formation of the films. Although Raman spectroscopy revealed some evidence of cation disorder, the film prepared at 750°C shows a sharp superconducting transition at 91 K and critical current density of 1.3 MA/cm2 at 77 K. Optimal heat treatment temperature was 750°C in the argon atmosphere, which is consistent with the thermodynamic estimate that heat treatment temperature decreases as oxygen partial pressure decreases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Holesinger, T. G., Foltyn, S. R., Arendt, P. N., Kung, H., Jia, Q. X., Dickerson, R. M., Dowden, P. C., DePaula, R. F., Groves, J. R., and Coulter, J. Y., J. Mater. Res. 15[5], 11101119 (2000).Google Scholar
2. Iijima, Y., Supercond. Sci. Technol. 13, 6881 (2000).Google Scholar
3. Schey, B., Biegel, W., Kuhn, M., and Stritzker, B., IEEE Trans. Appl. Supercond. 9[2], 23592362 (1999).Google Scholar
4. McIntyre, P. C., Cima, M. J., Smith, J. A., Hallock, R. B., Siegal, M. P., and Phillips, J. M. J. Appl. Phys. 71[4], 18681877 (1992).Google Scholar
5. McIntyre, P. C., Cima, M. J., and Ng, M. F., J. Appl. Phys. 68[8], 41834187 (1990).Google Scholar
6. Smith, J. A., Cima, M. J., and Sonnenberg, N., IEEE Trans. Appl. Supercond. 9[2], 15311534 (1999).Google Scholar
7. Sathyamurthy, S. and Salama, K., Physica C, 329, 5868 (2000).Google Scholar
8. Sathyamurthy, S. and Salama, K., J. of Supercond. 11[5], 543553 (1998).Google Scholar
9. Yamigawa, K., Hiei, H., Takahashi, Y., Kim, S. B., Matsumoto, K., Ikuta, H., Mizutani, U., and Hirabayashi, I., Physica C, 334, 301305 (2000).Google Scholar
10. Solovyov, V. F., Wiesmann, H. J., Wu, L., Suenaga, M., and Feenstra, R., IEEE Trans. Appl. Supercond. 9[2], 14671470 (1999).Google Scholar
11. Matsubara, I., Paranthaman, M., Singhal, A., Vallet, C., Lee, D. F., Martin, P. M., Hunt, R. D., Feenstra, R., Yang, C.-Y., and Babcock, S. E., Physica C, 319, 128132 (1999).Google Scholar
12. Bauer, M., Schwachulla, J., Egly, J., Berberich, P. and Kinder, H., Advances in Superconductivity X (Proc. 10th Int. Symp. on Superconductivity (ISS'97), Oct. 27-30, 1997, Gifu, Japan), pp. 979982.Google Scholar
13. Bauer, M., Semerad, R., and Kinder, H., IEEE Trans. Appl. Supercond. 9[2], 15021505 (1999).Google Scholar
14. Iliev, M. N., Spectroscopy of Superconducting Materials (ACS symposium series; 730), ed. Faulques, Eric (American Chemical Society, Washington, DC, 1999), pp. 107117.Google Scholar
15. Bormann, R. and Nölting, J., Appl. Phys. Lett. 54[21], 21482150 (1989).Google Scholar