Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T02:39:54.637Z Has data issue: false hasContentIssue false

Ternary Bismuth Chalcogenides for Thermoelectric Applications. Synthesis and Charge Transport Properties of New Compounds in the K-BI-S System.

Published online by Cambridge University Press:  10 February 2011

Mercouri G. Kanatzidis
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing MI 48824.
Timothy J. McCarthy
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing MI 48824.
Troy A. Tanzer
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing MI 48824.
Li-H. Chen
Affiliation:
Saint Aquinas College, Grand Rapids, MI
Tim Hogan
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208.
Carl R. Kannewurf
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208.
Lykourgos Iordanidis
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing MI 48824.
Get access

Abstract

KBi6.33S10 and K2Bi8S13 were synthesized by the direct combination of K2S/Bi2S3 at high temperature (>700°C). The reaction of K2S/3.3Bi2S3 at 800°C revealed the presence of a new ternary sulfide KBi6.33S10 (I) (92% yield). The structure consists of blocks of Bi2Te3 and Cdl2-type units that are connected to form a three-dimensional network with K+ ions located in the channels that run along the b-axis. The same reaction but with a different ratio, at 750°C, gave the new ternary sulfide K2Bi8S13 (II) (94% yield). The structure of the shiny rod-like crystals is closely related to that of I. As in I, it also consists of Bi2Te3 and Cdl2-type fragments that connect to form K+-filled channels. The two potassium atoms and one bismuth atom are disordered over three sites. Some preliminary electrical and optical properties of these materials are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Kaibe, H.; Tanaka, Y.; Sakata, M.; Nishida, I. J. Phys. Chem. Solids 1989, 50, 945. (b) Jeon, H-W.; Ha, H-P.; Hyun, D-B.; Shim, J-D. J. Phys. Chem. Solids 1991, 4, 579. (c) Rowe, D. M.; Bhandari, C. M. Modern Thermoelectrics, Holt, Rinehart and Winston: London, 1983; p. 103.Google Scholar
2. (a) Smith, M. J.; Knight, R. J.; Spencer, C. W. J. Appl. Phys. 1962, 33(7),2186. (b) Testardi, L. R.; Bierly, J. N. Jr.; Donahoe, F. J. J. Phys. Chem. Solids, 1962, 23, 1209. (c) Champness, C. H.; Chiang, P. T.; Parekh, P. Can. J. Phys. 1965, 43, 653. (d) Yim, W. M.; Fitzke, E. V. J. Electrochem. Soc. 1968, 115, 556.Google Scholar
3. (a) Boon, J. W. Rec. Tray. Chim. Pays-Bas, 1944, 63,32. (b) Glemser, O.; Filcek, M. Z. Anorg. AI/g. Chem., 1955, 279, 321 (c) Gattow, G.; Zemann, J. Z. Anorg. Allg. Chem., 1955, 279, 324.Google Scholar
4. Voroshilov, Y. V.; Peresh, E. Y.; Golovei, M. I. Inorganic Materials 1972, 8, 777.Google Scholar
5. Kanishcheva, A. S.; Mikhailov, J. N.; Lazarev, V. B.; Trippel, A. F. Dokl. Akad. Nauk, SSSR(Kryst.),1980, 252, 96.Google Scholar
6. Schmitz, D.; Bronger, W. Z. Naturforsch., 1974, 29,438.Google Scholar
7. Julien-Pouzol, M.; Jaulmes, S.; Laruelle, P. Acta. Cryst. 1979, B35, 1313.Google Scholar
8. Aurivillus, B., Acta Chem. Scand. 1983, A37 399407.Google Scholar
9. Cordier, G., Schifer, H., Schwidetzky, C., Rev. Chim. Miner.,1985, 22 676.Google Scholar
10. Cordier, G., Schafer, H., Schwidetzky, C., Rev. Chim. Miner., 1985, 22 631.Google Scholar
11. Volk, K., Cordier, G., Cook, R., Schafer, H., Z. Naturforsch.,1990, 35b 136.Google Scholar
12. Liautard, B.; Garcia, J. C.; Brun, G.; Tedenac, J. C.; Maurin, M. Eur. J. Solid State lnorg. Chem.1990, 27,819.Google Scholar
13. Lee, S.; Fischer, E; Czerniak, J.; Nagasundaram, N. J. Alloys Comp. 1993, 197, 1.Google Scholar
14. litaka, Y.; Nowacki, W. Acta Cryst., 1962, 15,691.Google Scholar
15. Kupcik, V.; Makovicky, E. N. Jb. Miner. Mh., 1968, 7,236.Google Scholar
16. Ohmasa, M.; Nowacki, W. Z. Kristallogr.1973, 137, 422.Google Scholar
17. Kohatsu, I; Wuensch, B. J. Acta Cryst. 1971, B27,1245.Google Scholar
18. McCarthy, T. J.; Ngeyi, S.-P.; Liao., J.-H.; DeGroot., D.; Hogan, T.; Kannewurf, C. R.; Kanatzidis, M. G., Chem. Mater., 1993, 5,331.Google Scholar
19. McCarthy, T. J.; Tanzer., T. A.; Kanatzidis, M G. J. Am Chem. Soc. 1995, 117, 1294.Google Scholar
20. lordanidis, L.; Kanatzidis, M. G. work in progress.Google Scholar