Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T08:52:35.505Z Has data issue: false hasContentIssue false

Terahertz light amplification by stimulated emission of radiation in optically pumped graphene

Published online by Cambridge University Press:  07 June 2012

Taiichi Otsuji
Affiliation:
RIEC, Tohoku University, Sendai, 980-8577, Japan JST-CREST, Tokyo, 102-0075, Japan
Stephane Boubanga Tombet
Affiliation:
RIEC, Tohoku University, Sendai, 980-8577, Japan
Akira Satou
Affiliation:
RIEC, Tohoku University, Sendai, 980-8577, Japan JST-CREST, Tokyo, 102-0075, Japan
S. Chan
Affiliation:
NSF-PIRE Nano-Japan, University of Pennsylvania, Philadelphia, PA 19104, USA
Victor Ryzhii
Affiliation:
RIEC, Tohoku University, Sendai, 980-8577, Japan JST-CREST, Tokyo, 102-0075, Japan
Get access

Abstract

Recent advances in terahertz light amplification by stimulated emission of radiation in optically pumped graphene are reviewed. We present, within a picosecond time scale, fast relaxation and relatively slow recombination dynamics of photogenerated electrons and holes in an exfoliated graphene under infrared pulse excitation. We conduct time-domain spectroscopic studies using an optical pump and terahertz probe with an optical probe technique and show that graphene sheet amplifies an incoming terahertz field. The graphene emission spectral dependency on laser pumping intensity shows a threshold-like behavior, testifying to the occurrence of the negative conductivity and the population inversion. The emission spectra clearly narrow at a longer terahertz probe delay time, giving an evidence that the quasi-Fermi energy moves closer to the equilibrium at this longer terahertz probe delay time.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K.S, Geim, A.K., Morozov, S.V, Jiang, D, Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Frisov, A.A., Science 306,666 (2004).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A., Nature 438, 197 (2005).CrossRefGoogle Scholar
Kim, P., Zhang, Y., Tan, Y.-W., Stormer, H.L., Nature 438, 201 (2005).Google Scholar
Geim, K. and Novoselov, K. S., Nature Mater. 6, 183 (2007).CrossRefGoogle Scholar
Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A. C., Nature Photon. 4, 611622 (2010).CrossRefGoogle Scholar
Ryzhii, V., Ryzhii, M., and Otsuji, T., J. Appl. Phys. 101, 083114 (2007).CrossRefGoogle Scholar
Ryzhii, V., Ryzhii, M., Mitin, V., Satou, A., and Otsuji, T., Jpn. J. Appl. Phys. 50, 094001 (2011).CrossRefGoogle Scholar
Suzuura, H. and Ando, T., J. Phys. Soc. Jpn. 77, 044703 (2008).CrossRefGoogle Scholar
Maultzsch, J., Phys. Rev. B 70, 155403 (2004).CrossRefGoogle Scholar
Dawlaty, J.M., Shivaraman, S., Chandrashekhar, M., Rana, F., Spencer, M.G., Appl. Phys. Lett. 92, 042116 (2008).CrossRefGoogle Scholar
George, P. A., Strait, J., Dawlaty, J., Shivaraman, S., Chandrashekhar, M., and Spencer, F. R. M. G., Nano Lett. 8, 4248 (2008).CrossRefGoogle Scholar
Breusing, M., Ropers, C., and Elsaesser, T., Phys. Rev. Lett. 102, 086809 (2009).CrossRefGoogle Scholar
Satou, A., Otsuji, T., Ryzhii, V., Jpn. J. Appl. Phys. 50, 070116 (2011).CrossRefGoogle Scholar
Satou, A., Boubanga Tombet, S. A., Otsuji, T., and Ryzhii, V., in Dig. OTST: Int. Conf. on Optical Terahertz Science and Technology, OSA, Ed. (2011) p. TuA3.Google Scholar
Karasawa, H., Komori, T., Watanabe, T., Satou, A., Fukidome, H., Suemitsu, M., Ryzhii, V., and Otsuji, T., J. Infrared Milli. Terahertz Waves 32, 655 (2011).CrossRefGoogle Scholar
Boubanga-Tombet, S., Chan, S., Watanabe, T., Satou, A., Ryzhii, V., and Otsuji, T., Phys. Rev. B 85, 035443 (2012).CrossRefGoogle Scholar
Hebling, J., Alm´asi, G., and Kozma, I. Z., Opt. Express 10, 1161 (2002).CrossRefGoogle Scholar
Dubinov, A.A., Aleshkin, Y.V., Mitin, V., Otsuji, T., and Ryzhii, V., J. Phys.: Condens. Matter 23, 145302 (2011).Google Scholar
de Heera, W.A., Berger, C., Wu, X., First, P.N., Conrad, E.H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M., d Martinez, G., Solid State Comm. 143, 92 (2007).CrossRefGoogle Scholar
Suemitsu, M. and Fukidome, H., J. Phys. D 43, 374012 (2010).CrossRefGoogle Scholar
Fukidome, H., Takahashi, R., Abe, S., Imaizumi, K., Handa, H., Kang, H.-C., Karasawa, H., Suemitsu, T., Otsuji, T., Enta, Y., Yoshigoe, A., Teraoka, Y., Kotsugi, M., Ohkouchi, T., Kinoshita, T. and Suemitsu, M., J. Mater. Chem. 21, 17242 (2011).CrossRefGoogle Scholar
Fukidome, H., Abe, S., Takahashi, R., Imaizumi, K., Inomata, S., Handa, H., Saito, E., Enta, Y., Yoshigoe, A., Teraoka, Y., Kotsugi, M., Ohkouchi, T., Kinoshita, T., Ito, S., and Suemitsu, M., Appl. Phys. Express 4, 115104 (2011).CrossRefGoogle Scholar