Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-01T07:43:26.487Z Has data issue: false hasContentIssue false

Terahertz Emission from Vertically-aligned Silicon Nanowires

Published online by Cambridge University Press:  01 February 2011

Yong Jae Cho
Affiliation:
[email protected], korea university, 5-ka, Anam-dong, Sunbuk-ku, Seoul 136-701, Korea, Seoul, 136-701, Korea, Republic of
Gyeong Bok Jung
Affiliation:
[email protected], Korea University, Seoul, Korea, Republic of
Yoon Myung
Affiliation:
[email protected], Korea University, Seoul, Korea University, Korea, Republic of
Han Sung Kim
Affiliation:
[email protected], United States
Young Suk Seo
Affiliation:
[email protected], Korea University, Seoul, Korea, Republic of
Jeunghee Park
Affiliation:
[email protected], Korea University, Seoul, Korea, Republic of
Get access

Abstract

Large-area vertically aligned silicon nanowire (Si NW) arrays were synthesized with a controlled length (0.3 ˜ 9 μm) by the chemical etching of n-type silicon substrates. Upon their excitation using a fs Ti-sapphire laser pulse (800 nm), their THz emission intensity exhibits strong dependence on their length; the intensity increases sharply up to a length of 3 μm and then decreases slightly, due to the complete absorption of the optical pump power. The Raman scattering spectrum exhibits the same behavior as that of the THz emission. We suggest that the field enhancement by localized surface plasmons induces more efficient THz emission or Raman scattering for the longer Si NWs. The photocurrent measured in a photoelectrochemical cell showed consistently the length dependence with a maximum value at the length of 5 μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References and Notes

(1) (a) Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435. (b) Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. Adv. Mater. 2003, 15, 353.Google Scholar
(2) Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L. J.; Kim, K. -H.; Lieber, C. M. Science 2001, 294, 1313.Google Scholar
(3) Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M. Nature 2002, 415, 617.Google Scholar
(4) Pucci, A.; Neubrech, F.; Aizpurua, J.; Cornelius, T.; de la Chapelle, M. L. in Lecture notes in nanoscale science and technology, Vol. 3 (Eds: Wang, Z. M.), Springer-Verlag, New York, 2008, Ch. 8.Google Scholar
(5) Seletskity, D.; Hasselbeck, M. P.; Sheik-Bahae, M.; Cederberg, J. G.; Chuang, L. C.; Moewe, M.; Chang-Hasnain, C. CLEO/QELS 2008 CMM2.Google Scholar
(6) He, S.; Chen, X.; Wu, X.; Wang, G.; Zhao, F. J. Lightwave Technology 2008, 26, 1519.Google Scholar
(7) Reid, M.; Cravetchi, I. V.; Fedosejevs, R.; Tiginyanu, I. M.; Sirbu, L. Appl. Phys. Lett. 2005, 86, 021904.Google Scholar
(8) (a) Peng, K. -Q.; Yan, Y. -J.; Gao, S. -P.; Zhu, J. Adv. Mater. 2002, 14, 1164. (b) Peng, K.; Yan, Y.; Gao, S.; Zhu, J. Adv. Funct. Mater. 2003, 13, 127. (c) Peng, K.; Wu, Y.; Fang, H.; Zhong, X.; Xu, Y.; Zhu, J. Angew. Chem. Int. Ed. 2005, 44, 2737. (d) Peng, K.; Xu, Y.; Wu, Y.; Yan, Y.; Lee, S. -T.; Zhu, J. Small 2005, 1, 1062. (e) Peng, K.; Hu, J.; Yan, Y.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S.; Zhu, J. Adv. Funct. Mater. 2006, 16, 387. (f) Hunag, Z.; Fang, H.; Zhu, J. Adv. Mater. 2007, 19, 744.Google Scholar
(9) (a) Peng, K.; Zhang, M.; Lu, A.; Wong, N. -B.; Zhang, R.; Lee, S. -T. Appl. Phys. Lett. 2007, 90, 163123. (b) Zhang, M. -L.; Peng, K. -Q.; Fan, X.; Jie, J. -S.; Zhang, R. -Q.; Lee, S. -T.; Wong, N. -B. J. Phys. Chem. C 2008, 112, 4444. (c) Peng, K.; Lu, A.; Zhang, R.; Lee, S. -T. Adv. Funct. Mater. 2008, 18, 3026. (d) Peng, K. -Q.; Wang, X.; Wu, X. -L.; Lee, S. -T. Nano Lett. 2009, 9, 3704.Google Scholar
(10) (a) Shimizu, T.; Xie, T.; Nishikawa, J.; Shingubara, S.; Senz, S.; Gosele, U. Adv. Mater. 2007, 19, 917. (b) Huang, Z.; Zhang, X.; Reiche, M.; Liu, L.; Lee, W.; Shimizu, T.; Senz, S.; Gosele, U. Nano Lett. 2008, 8, 3046. (c) Huang, Z.; Shimizu, T.; Senz, S.; Zhang, Z.; Zhang, X.; Lee, W.; Geyer, N.; Gosele, U. Nano Lett. 2009, 9, 2519.Google Scholar
(11) (a) Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Nature 2008, 451, 163. (b) Hwang, Y. J.; Boukai, A.; Yang, P. Nano Lett. 2009, 9, 410. (c) Hochbaum, A. I.; Gargas, D.; Hwang, Y. J.; Yang, P. Nano Lett. 2009, 9, 3550.Google Scholar
(12) Goodey, A. P.; Eichfeld, S. M.; Lew, K. -K.; Redwing, J. M.; Mallouk, T. E. J. Am. Chem. Soc. 2007, 129, 12344.Google Scholar
(13) Maiolo III, J. R.; Atwater, H. A.; Lewis, N. S. J. Phys. Chem. C 2008, 112, 6194.Google Scholar
(14) SivaKov, V.; Andra, G.; Gawlik, A.; Berger, A.; Plentz, J.; Falk, F.; Christiansen, S. H. Nano Lett. 2009, 9, 1549.Google Scholar
(15) Dalchiele, E. A.; Martin, F.; Leinen, D.; Marotti, R. E.; Ramos-Barrado, J. R. J. Electrochem. Soc. 2009, 156, K77.Google Scholar
(16) Kalita, G.; Adhikari, S.; Aryal, R. H.; Afre, R.; Soga, T.; Sharon, M.; Koichi, W.; Umeno, M. J. Phys. D: Appl. Phys. 2009, 42, 115104.Google Scholar
(17) Shu, Q.; Wei, J.; Wang, K.; Zhu, H.; Li, Z.; Jia, Y.; Gui, X.; Guo, N.; Li, X.; Ma, C.; Wu, D. Nano Lett. 2009, 9, 4338.Google Scholar
(18) Brammer, K. S.; Choi, C.; Oh, S.; Cobb, C. J.; Connelly, L. S.; Loya, M.; Kong, S. D.; Jin, S. Nano Lett. 2009, 9, 3570.Google Scholar
(19) Qu, Y.; Liao, L.; Li, Y.; Zhang, H.; Huang, Y.; Duan, X. Nano Lett. 2009, 9, 4539.Google Scholar
(20) Koynov, S.; Brandt, M. S.; Stutzmann, M. Appl. Phys. Lett. 2006, 88, 203107.Google Scholar
(21) Yoo, J. S.; Parm, I. O.; Gangpopadhyay, U.; Kim, K.; Dhungel, S. K.; Mangalaraj, D.; Yi, J. Solar Energy Materials & Solar Cells 2006, 90, 3085.Google Scholar
(22) Hoyer, P.; Theuer, M.; Beigang, R.; Kley, E. -B. Appl. Phys. Lett. 2008, 93, 091106.Google Scholar
(23) Roumanie, M.; Delattre, C.; Mittler, F.; Marchand, G.; Meille, V.; de Bellefon, C.; Pijolat, C.; Tournier, G.; Pouteau, P. Chem. Eng. J. 2008, 135, S317.Google Scholar
(24) Branz, H. M.; Yost, V. E.; Ward, S.; Jones, K. M.; To, B.; Stradins, P. Appl. Phys. Lett. 2009, 94, 231121.Google Scholar
(25) Talian, I.; Mogensen, K. B.; Orinak, A.; Kaniansky, D.; Hubner, J. J. Raman Spectrosc. 2009, 40, 982.Google Scholar
(26) Schaadt, D. M.; Feng, B.; Yu, E. T. Appl. Phys. Lett. 2005, 86, 063106.Google Scholar
(27) Derkacs, D.; Lim, S. H.; Matheu, P.; Mar, W.; Yu, E. T. Appl. Phys. Lett. 2006, 89, 093103.Google Scholar
(28) Akimov, Y. A.; Ostrikov, K.; Li, E. P. Plasmonics, 2009, 4, 107.Google Scholar
(29) Westphalen, M.; Kreibig, U.; Rostalski, J.; Luth, H.; Meissner, D. Solar Energy Materials & Solar Cells, 2000, 61, 97.Google Scholar
(30) Zhang, X. C.; Auston, D. H. J. Appl. Phys. 1992, 71, 326.Google Scholar
(31) Dember, H. Phys. Z. 1931, 32, 554.Google Scholar
(32) Kono, S.; Gu, P.; Tani, M.; Sakai, K. Appl. Phys. B: Lasers Opt. 2000, 71, 901.Google Scholar
(33) Kersting, R.; Heyman, J. N.; Strasser, G.; Unterrainer, K. Phys. Rev. B. 1998, 58, 4553.Google Scholar
(34) Xiong, Q.; Chen, G.; Gutierrez, H. R.; Eklund, P. C. Appl. Phys. A. 2006, 85, 299.Google Scholar
(35) Hasselbeck, M. P.; Seletskiy, D.; Dawson, L. R.; Sheik-Bahae, M. Phys. Stat. Sol. (c). 2008, 5, 253.Google Scholar
(36) Bosbach, J.; Hendrich, C.; Stiez, F.; Vartanyan, T.; Träger, F. Phys. Rev. Lett. 2002, 89, 257404.Google Scholar
(37) Gu, P.; Tani, M. in Terahertz Optoelectroninc, Topics Appl. Phys. 97 (Eds: Sakai, K.) Springer-Verlag, Berlin Heidelberg, 2005, Ch. 3.Google Scholar
(38) Yang, Y.; Xiong, L.; Shi, J.; Nogami, M. Nanotechnology 2006, 17, 2670.Google Scholar
(39) Billot, L.; de la Chapelle, M.; Grimault, A. -S.; Vial, A.; Barchiesi, D.; Bijeon, J. -L.; Adam, P. -M.; Royer, P. Chem. Phys. Lett. 2006, 422, 303.Google Scholar
(40) Yuan, G.; Zhao, H.; Liu, X.; Hasanali, Z. S.; Zou, Y.; Levine, A.; Wang, D. Angew. Chem. Int. Ed. 2009, 48, 9680.Google Scholar