Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:53:12.820Z Has data issue: false hasContentIssue false

Tensile Strength and Creep Resistance in Nanocrystalline Cu, Pd and Ag

Published online by Cambridge University Press:  28 February 2011

G. W. Nieman
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
J. R. Weertman
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
R. W. Siegel
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Measurements of tensile strength and creep resistance have been made on bulk samples of nanocrystalline Cu, Pd and Ag consolidated from powders by cold compaction. Samples of Cu-Cu2O have also been tested. Yield strength for samples with mean grain sizes of 5–80 nm and bulk densities on the order of 95% of theoretical density are increased 2–5 times over that measured in pure, annealed samples of the same composition with micrometer grain sizes. Ductility in the nanocrystalline Cu has exceeded 6% true strain, however, nanocrystalline Pd samples were much less ductile. Constant load creep tests performed at room temperature at stresses of >100 MPa indicate logarithmic creep. The mechanical properties results are interpreted to be due to grain size-related strengthening and processing flaw-related weakening.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

References

References Cited

1 Hall, E. O., Proc. Phys. Soc. London B64, 747 (1951).Google Scholar
2 Petch, N. J., J. Iron Steel Inst, 174, 25 (1953).Google Scholar
3 Armstrong, R. W., in Yield, Flow and Fracture of Polycrystals, Baker, T. N., ed., (Applied Science Publishers, London, 1983), p. 1.Google Scholar
4 Coble, R. L., J. Appl. Phys. 34, 1679 (1963).CrossRefGoogle Scholar
5 Horváth, J., Birringer, R., and Gleiter, H., Solid St. Commun. 62, 319 (1987).CrossRefGoogle Scholar
6 Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).Google Scholar
7 Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Met. 23, 2013 (1989).Google Scholar
8 Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Met. et Mater. 24, 145 (1990).Google Scholar
9 Nieman, G. W., Weertman, J. R., and Siegel, R. W., submitted for publication (1990).Google Scholar
10 Nieman, G. W. and Weertman, J. R., Proceedings of the M. E. Fine Symp., Fall, ASM/TMS Annual Mtg., Detroit (1990), in press.Google Scholar
11 Nieman, G. W., Weertman, J. R., and Siegel, R. W., Proceedings of the Acta Met. Conf. on Nanostructured Materials,, submitted for publication (1990).Google Scholar
12 Nieman, G. W., Weertman, J. R., and Siegel, R. W., this volume (1990).Google Scholar
13 Granqvist, C. G. and Buhrman, R. A., J. Appl. Phys. 47, 2200 (1976).Google Scholar
14 Birringer, R., Herr, U., and Gleiter, H., Trans. Jpn. Inst. Metall. Suppl. 27, 43 (1986).Google Scholar
15 Hahn, H., Eastman, J. A., and Siegel, R. W., Ceramic Trans. 1B, 1115 (1988).Google Scholar
16 Hansen, N. and Ralph, B., Acta Met. 30, 411 (1982).Google Scholar
17 Ashby, M. F., Acta Met. 30, 411 (1982).Google Scholar
18 Thompson, A. W., Baskes, M. I. and Flannagan, W. F., Acta Met. 21, 1017 (1973).CrossRefGoogle Scholar
19 Jang, J. S. C. and Koch, C. C., Scripta Met. et Mater. 24, 1599 (1990).CrossRefGoogle Scholar
20 Thompson, A. W., Acta Met. 23, 1337 (1977).CrossRefGoogle Scholar
21 Saito, K., Iwamoto, M., Nomura, Y., and Nakamura, T., in Weng, G. J. et al., eds., Micromechanics and Inhomogeneity (Springer-Verlag, New York, 1990) p. 385.Google Scholar
22 Meyers, M. A. and Ashworth, E., Phil. Mag. A. 46, 737 (1982).CrossRefGoogle Scholar
23 Gryaznov, V. G., Solov’ev, V. A., and Trusov, L. I., Scripta Met. et Mater. 24, 1529 (1990).CrossRefGoogle Scholar
24 Li, L.C.M., J. Appl. Phys. 32 525541 (1961).Google Scholar
25 Li, L.C.M., Phil. Mag. 59A 1245 (1989).CrossRefGoogle Scholar
26 Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials, 2nd ed., (John Wiley and Sons, New York, 1983) p. 697.Google Scholar