Published online by Cambridge University Press: 11 February 2011
The fatigue crack growth kinetics and tensile deformation of bulk nanocrystalline Al-7.5Mg were investigated. Nanocrystalline particulates were first prepared by mechanically ball milling spray atomized Al-7.5Mg powders in liquid nitrogen. These particulates were then degassed, consolidated by hot isostatic pressing, and extruded into rods. Bulk nanocrystalline Al-7.5Mg has significantly higher fatigue crack growth rates and lower fatigue crack growth thresholds than those of ingot-processed 7050-T7451. The fatigue crack growth thresholds exhibit only a weak stress ratio dependency and can be identified as having a Class I behavior when using the fatigue classification proposed by Vasudevan and Sadananda. In 3.5% NaCl solution, fatigue crack growth rates of bulk nanocrystalline Al-7.5Mg are as much as three times higher than those obtained in air. Tensile fracture of bulk nanocrystalline Al-7.5Mg is preceded by the formation of a localized shear band. In contrast to the low dislocation density in the as-extruded material, the gage section and the shear band region both exhibited a high dislocation density and dislocation cell structure.