Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T06:27:32.108Z Has data issue: false hasContentIssue false

Temperature-Dependent Structure of a<101> Superdislocations in Ni3Al

Published online by Cambridge University Press:  22 February 2011

D. C. Chrzan
Affiliation:
Computational Materials Science Department, Sandia National Laboratories, Livermore, CA
S. M. Foiles
Affiliation:
Computational Materials Science Department, Sandia National Laboratories, Livermore, CA
M. S. Daw
Affiliation:
Department of Physics, Clemson University, Clemson, SC
M. J. Mills
Affiliation:
Department of Materials Science, Ohio State University, Columbus, OH.
Get access

Abstract

The dissociated structure of the a〈101〉 superdislocations in Ni3Al is predicted as a function of temperature. The temperature dependence of the relevant fault Helmholtz free energies and elastic constants are calculated within the quasiharmonic approximation using the embedded atom method. The results of these calculations are then incorporated into anisotropic elasticity theory-based calculations of the dissociation distances. The cross-slip activation enthalpy is estimated and found to decrease by 24% at 600 K when compared with its 0 K value. The calculations point to the need to perform experiments to address this temperature dependence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Paidar, V., Pope, D. P., and Vitek, V., Acta metall. 32, 435 (1984).Google Scholar
2. Kear, B. H. and Wilsdorf, H. G. F., Trans. Metall. Soc. AIME 224, 382 (1962).Google Scholar
3. Mills, M. J. and Chrzan, D. C., Acta metall. mater. 40, 3051 (1992).Google Scholar
4. Chrzan, D. C. and Mills, M. J., Phys. Rev. B 50, 30 (1994).Google Scholar
5. Daw, M. S., Foiles, S. M., and Baskes, M. I., Materials Science Reports 9, 251 (1993).Google Scholar
6. Maradudin, A. A., Montroll, E. W., and Weiss, G. H., Theory of Lattice Dynamics in the Harmonic Approximation, (Academic Press, New York, 1963).Google Scholar
7. Foiles, S. M., Phys. Rev. B 49, 14930 (1994).Google Scholar
8. Voter, A. F. and Chen, S. P. in Characterization of Defects in Materials, edited by Siegel, R. W., Weertman, J. R., and Sinclair, R. (Mater. Res. Soc. Proc. 82, Pittsburgh, PA, 1987) pp. 175180.Google Scholar
9. Foiles, S. M. and Daw, M. S., J. Mater. Res. 2, 5 (1987).Google Scholar
10. Stassis, C.. Kayser, F. X., Loong, C.-K. and Arch, D., Phys. Rev. B 24, 3048 (1981).Google Scholar
11. Morris, D. G., Scripta Metallurgica et Materialia 26, 733 (1992).Google Scholar
12. Yoo, M., private communication.Google Scholar
13. See Hemker, K. J., Viguier, B., Schäublin, R. and Mills, M. J. in High Temperature Ordered In-termetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J. D. and Yoo, M. H. (Mater. Res. Soc. Proc. 288, Pittsburgh, PA, 1993) pp. 329334, and references therein.Google Scholar
14. Veyssière, P., Yoo, M. H., Horton, J. A. and Liu, C. T., Phil. Mag. Lett. 59, 61 (1989).Google Scholar
15. Crimp, M. A., Phil. Mag. Lett. 60, 45 (1989).Google Scholar