Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T04:57:45.553Z Has data issue: false hasContentIssue false

Temperature Sensor On Boron Ion Implanted Diamond

Published online by Cambridge University Press:  10 February 2011

R. Job
Affiliation:
University of Hagen, LGBE, Haldener Str. 182, D-58084 Hagen, GERMANY
A. V. Denisenko
Affiliation:
University of Hagen, LGBE, Haldener Str. 182, D-58084 Hagen, GERMANY
A. M. Zaitsev
Affiliation:
University of Hagen, LGBE, Haldener Str. 182, D-58084 Hagen, GERMANY
M. Werner
Affiliation:
VDI/VDE-IT, Rheinstr. 10 B, D-14513 Teltow, GERMANY
A. A. Melnikov
Affiliation:
Belarussian State University, HEII&FD, Pr. F. Skorina 4, Minsk 220080, BELARUS
W. R. Fahrner
Affiliation:
University of Hagen, LGBE, Haldener Str. 182, D-58084 Hagen, GERMANY
Get access

Abstract

p-type semiconducting boron doped layers have been fabricated on diamond substrates by ion implantation and subsequent annealing. A number of the related published experimental data and theoretical models on electrical properties of boron doped diamond are analyzed with regard to the temperature coefficient of resistance (TCR) of temperature sensors. The dependencies of the conductivity and activation energy on three parameters: (i) boron doping level NA, (ii) electrical compensation ratio ND/NA- C and (iii) duration of the postimplantation annealing time ta are studied. By variation of NA, C and t, an optimized technological regime for the temperature sensor fabrication can be obtained. One can summarize that: 1) the TCR value is not remarkably reduced with the boron concentration up to NA -1019 cm-3, 2) an increase of the electrical compensation decreases the activation energy and consequently the TCR coefficient,3) 1 h annealing at 1500°C is sufficient to remove the compensating radiation defects, 4) the variation of the ta from 1 min to 1 h changes the TCR value by 20% to 30%. Technological steps of the fabrication of a micro temperature sensor are given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Malta, D.M., von Windheim, J.A., Wynands, H.A., Fox, B.A., J. Appl. Phys. 77(4), 1536 (1995)Google Scholar
[2] Dreifus, D.L., in Diamond: Electronic Properties and Applications; edited by Pan, L.S., Kania, D.R., Kluwer Academic Publishers, Boston, 1995, p. 371442 Google Scholar
[3] Braunstein, G., Kalish, R., J. Appl. Phys. 54(4), 2106 (1983)Google Scholar
[4] Williams, A.W.S., Lightowlers, E.C., Collins, A.T., J. Phys. C 3, 1727 (1970)Google Scholar
[5] Collins, A.T., Williams, A.W.S., J. Phys. C 4, 1789 (1971)Google Scholar
[6] Massarani, B., Bourgoin, J.C., Chrenko, R.M., Phys. Rev. B 17(4), 1758 (1978)Google Scholar
[7] Collins, A.T., Lightowlers, E.C., in The Properties of Diamond, edited by Field, J.E., Academic Press, New York, 1979, p. 79 Google Scholar
[8] Vishnevskii, A.S., Gontar, A.G., Torishnii, V.I., Shul'zhenko, A.A., Sov. Phys. Semicond. 15(6), 659 (1981)Google Scholar
[9] Shiomi, H., Nishibayashi, Y., Fujimori, N., Jap. J. Appl. Phys. 54(4), 2106 (1983)Google Scholar
[10] Baranskii, P.I., Malogolovets, V.G., Torishinii, V.I., Chipenko, G.V., Sov. Phys. Semicond. 21(1), 45 (1987)Google Scholar
[11] Okano, K., Naruki, N., Akiba, Y., Kuosu, T., lida, M., Hirose, Y., Nakamura, T., Jap. J. Appl. Phys. 28(6), 1066 (1989)Google Scholar
[12] Fujimori, N., Imai, T., Nakahata, H., Shiomi, H., , Nishibayashi (Eds.:Glass, J.T., Messier, R., Fujimori, N.), Mat. Res. Soc. 164, 23 (1990)Google Scholar
[13] Geis, M.W. (Eds.: Glass, J.T., Messier, R., N. Fujimori), Mat. Res. Soc. 164, 15 (1990)Google Scholar
[14] Nishimura, K., Das, K., Glass, J.T., J. Appl. Phys. 69(5), 3142 (1991)Google Scholar
[15] Werner, M., Dorsch, O., Baerwind, H.U., Obermeier, E., Haase, L., Seifert, W., Ringhandt, A., Johnston, C., Romani, S., Bishop, H. Chalker, P.R., Appl. Phys. Lett. 64(5), 595 (1994)Google Scholar
[16] Bourgoin, J.C., Krynicki, J., Blanchard, B., phys. stat. sol. (a) 52, 293 (1979)Google Scholar
[17] Nguen, V.L., Sklovskii, B.I., Soviet. Semiconduct. Phys. 13, 1763 (1979)Google Scholar
[18] Uzakov, A.A., Efros, A.L., Soviet. Semiconduct. Phys. 21, 922 (1987)Google Scholar
[19] Johnston, C., Chalker, P.R., Buckley-Golder, I.M., van Rossum, M., Werner, M., Obermeier, E., Mater. Sci. Engineer. B 29, 206 (1995)Google Scholar