Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T04:07:31.189Z Has data issue: false hasContentIssue false

Temperature Dependent Optical Response of Si(100): Theory vs. Experiment

Published online by Cambridge University Press:  07 July 2011

A.I. Shkrebtii
Affiliation:
University of Ontario Institute of Technology, Oshawa, ON, L1H 7L7, Canada Centro de Investigaciones en Optica, A. C., León, Guanajuato, 37150, México
J. Heron
Affiliation:
University of Ontario Institute of Technology, Oshawa, ON, L1H 7L7, Canada
J.L. Cabellos
Affiliation:
Centro de Investigaciones en Optica, A. C., León, Guanajuato, 37150, México
N. Witkowski
Affiliation:
Université Pierre et Marie Curie - Paris 6, Paris F-75005, France
O. Pluchery
Affiliation:
Université Pierre et Marie Curie - Paris 6, Paris F-75005, France
B.S. Mendoza
Affiliation:
Centro de Investigaciones en Optica, A. C., León, Guanajuato, 37150, México
Y. Borensztein
Affiliation:
Université Pierre et Marie Curie - Paris 6, Paris F-75005, France
Get access

Abstract

We investigate theoretically and experimentally the temperature-dependent linear optical properties of the clean c(4×2) reconstructed Si(100) surface for a wide range of temperatures. We combine two theoretical formalisms: the first one incorporates the contribution of temperature-dependent atomic motion to the surface optical response and, the second uses a dielectric function layer-by-layer separation method. Using these formalisms, we model temperature-dependent reflectance anisotropy (RA) of this surface for the first time: finite temperature ab-initio Car-Parrinello Molecular Dynamics (CPMD) at different temperatures up to 1000 K provide temperature-dependent atomic structural inputs for optical calculations and subsequent average of dielectric functions. Experimentally, one-domain c(4x2) Si(100) surface was prepared and characterised by Reflectance Anisotropy Spectroscopy (RAS) in a temperature range between 300 K and 800 K. Good agreement between experiment and theory is demonstrated, including a temperature-induced red shift of both the surface and bulk optical peaks. Theoretical results indicate that the temperature-induced modification of the optical response is substantially more pronounced for the surface than for the bulk.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Palummo, M., Witkowski, N., Pluchery, O., Del Sole, R., and Borensztein, Y., Phys.Rev.B 79, 035327 (2009).10.1103/PhysRevB.79.035327Google Scholar
[2] Ibrahim, Z. A., Shkrebtii, A. I., Lee, M., Vynck, V., Teatro, T., Richter, W., Trepk, T., and Zettler, T., Phys. Rev. B 77, 125218 (2008).10.1103/PhysRevB.77.125218Google Scholar
[3] Marini, A., Phys. Rev. Lett. 101, 106405 (2008).10.1103/PhysRevLett.101.106405Google Scholar
[4] Ibrahim, Z. A., Shkrebtii, A. I., Lee, M. J. G., Teatro, T., Drago, M., Trepk, T., and Richter, W., in PHYSICS OF SEMICONDUCTORS: 29th International Conference on the Physics of Semiconductors, Rio de Janeiro (Brazil), Jul 27-Aug 1, 2008, edited by Caldas, M. and Studart, N. (AIP, 2010), p. 61.Google Scholar
[5] Shkrebtii, A. I., Ibrahim, Z. A., Teatro, T., Richter, W., Lee, M. J. G., and Henderson, L., phys. stat. sol. (b) 247, 1881 (2010).10.1002/pssb.200983942Google Scholar
[6] Gavioli, L., Betti, M. G., Mariani, C., Shkrebtii, A. I., Del Sole, R., Cepek, C., Goldoni, A., and Modesti, S., Surf. Sci. 377-379, 360 (1997).10.1016/S0039-6028(96)01418-5Google Scholar
[7] Mendoza, B. S., Nastos, F., Arzate, N., and Sipe, J. E., Phys.Rev.B 74, 075318 (2006).10.1103/PhysRevB.74.075318Google Scholar
[8] Borensztein, Y. and Witkowski, N., Journal of Physics: Condensed Matter 16, S4301 (2004).Google Scholar
[9] Jaloviar, S. G., Lin, J., Liu, F., Zielasek, V., McCaughan, L., and Lagally, M. G., Phys. Rev. Lett. 82, 791 (1999).10.1103/PhysRevLett.82.791Google Scholar
[10] Pluchery, O., Witkowski, N., and Borensztein, Y., phys. stat. sol. (b) 242, 2696 (2005).10.1002/pssb.200541173Google Scholar
[11] Shioda, R. and van der Weide, J., Phys.Rev.B 57, R6823 (1998).10.1103/PhysRevB.57.R6823Google Scholar
[12] Quantum Espresso, http://www.quantum-espresso.org, 2007.Google Scholar
[13] Shkrebtii, A. I., Di Felice, R., Bertoni, C. M., and Del Sole, R., Phys.Rev.B 51, 11201 (1995).10.1103/PhysRevB.51.11201Google Scholar
[14] Gonze, X., Beuken, J. M., Caracas, R., et al. , Computational Materials Science 25, 478 (2002).10.1016/S0927-0256(02)00325-7Google Scholar
[15] Shkrebtii, A. I., et al. . In preparation.Google Scholar
[16] Aspnes, D. E., Colas, E., Studna, A. A., Bhat, R., Koza, M. A., and Keramidas, V. G., Phys. Rev. Lett. 61, 2782 (1988).10.1103/PhysRevLett.61.2782Google Scholar