Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T14:51:59.371Z Has data issue: false hasContentIssue false

Temperature Dependence of the Electrical Resistivity of Polymerized C60 Thin Films

Published online by Cambridge University Press:  11 February 2011

R. Govinthasamy
Affiliation:
Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA
J. H. Rhee
Affiliation:
Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA
S. C Sharma*
Affiliation:
Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA
Get access

Abstract

Highly conducting thin films of C60 were deposited by thermal evaporation in high vacuum on single crystal silicon substrates. The microstructure of the films was characterized by using Atomic Force Microscopy, and laser Raman spectroscopy. The films were polymerized by uv irradiation. The dc electrical resistivities of the as-deposited and uv-polymerized films were measured as functions of temperature between 295 and 17K by the four-probe technique. We present results on the effects of uv-irradiation on the surface microstructure and the temperature dependence of the electrical resistivity of these films.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., “Science of Fullerenes and Carbon Nanotubes”, Academic Press, 1996, and therein.Google Scholar
2. Solid State Physics, vol. 48, editors, Ehrenreich, H. and Spaepen, F., Academic Press, 1994.Google Scholar
3. Rao, A. M., Zhou, P., Wang, K., Hager, G. T., Holden, J. M., Wang, Y., Lee, W. T., Bi, X. X., Eklund, P.C., Cornett, D. S., Duncan, M. A., and Amster, I. J., Science, 259 (1993) 955.CrossRefGoogle Scholar
4. Iwasa, Y., Arima, T., Fleming, R. M., Siegrist, T., Zhou, O., Haddon, R. C., Rothberg, L. J., Lyons, K. B., Carter, H. L. Jr, Hebard, A. F., Tycko, R., Dabbagh, G., Krajewski, J. J., Thomas, G. A., and Yagi, T., Science 264 (1994) 1570.CrossRefGoogle Scholar
5. Forro, L. and Mihaly, L., Rep. Prog. Phys. 64 (2001), 649.CrossRefGoogle Scholar
6. Sharma, S. C., Ha, B., Rhee, J. H., and Li, Y., in Frontiers of High Pressure Research II, eds. Hochheimer, H. D., Kuchta, B., Dorhout, P. K., anf Yarger, J. L., Kluwer Acad. Publ. 48 (2001), 493.Google Scholar
7. Sharma, S. C., Ha, B., Rhee, J. H., Li, Y., Singh, D., and Govinthasamy, R., Mat. Res. Soc. Symp. Proc. 695 (2002), 97.Google Scholar
8. Ha, B., Rhee, J. H., Li, Y., Singh, D., and Sharma, S. C., Surf Science, 520 (2002), 186.CrossRefGoogle Scholar
9. MER Corporation, Tucson, Arizona.Google Scholar
10.1. Stepniak, F., Benning, P. J., Poirier, D. M., and Weaver, J. H., Phys. Rev. B 48 (1993) 1899.CrossRefGoogle Scholar
11. Rogge, S., Dunn, A. W., Melin, T., Dekker, C., and Geerligs, L. J., Carbon 38 (2000), 1647.CrossRefGoogle Scholar
12. Hyer, R. C., Pethe, R. G., Yogi, T., Sharma, S. C., Pomerantz, M., Wang, J., Meline, R. L., Elsenbaumer, R. L., and McCullough, R. C., Mat. Res. Soc. Symp. Proc. 488 (1998), 701.CrossRefGoogle Scholar