Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T14:40:35.706Z Has data issue: false hasContentIssue false

Temperature and Thickness Dependences of Thermoelectric Properties of PbS/EuS Bilayers

Published online by Cambridge University Press:  21 March 2011

Elena I. Rogacheva
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, Kharkov, UKRAINE
Sergey N. Grigorov
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, Kharkov, UKRAINE
Tatyana V. Tavrina
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, Kharkov, UKRAINE
Olga N. Nashchekina
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, Kharkov, UKRAINE
Yegor O. Vekhov
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, Kharkov, UKRAINE
Alexander Yu. Sipatov
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, Kharkov, UKRAINE
Valentine V. Volobuev
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, Kharkov, UKRAINE
Mildred S. Dresselhaus
Affiliation:
MIT, Dept of Physics, Cambridge, MA, USA
Get access

Abstract

A non-monotonic character of the dependences of the thermoelectric properties of PbS/EuS/(001)KCl heterostructures on the PbS layer thickness d (d = 2 – 200 nm) was detected. Pronounced extrema at d ∼ 15 nm and less distinct extrema at d ∼ 30 nm and d ∼ 100 nm were observed. It is suggested that the complex character of the dependences is caused by the competition between percolation phenomena and size quantization. The critical exponent for the electrical conductivity (t = 1.6 ± 0.15) is determined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B 47, 16631 (1993).Google Scholar
2. Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B 47, 12727 (1993).Google Scholar
3. Hicks, L.D., Harman, T.C., Sun, X., Dresselhaus, M.S., Phys. Rev. B 53, R10493 (1996).Google Scholar
4. Harman, T.C., Spears, D.L., and Manfra, M.J., J. Electron. Mater. 25, 1121 (1996).Google Scholar
5. Harman, T.C., Spears, D.L., and Walsh, M.P., J. Electron. Mater. 28, L1 (1999).Google Scholar
6. Rogacheva, E.I., Krivulkin, I.M., Nashchekina, O.N., Sipatov, A.Yu., Volobuev, V.V., Dresselhaus, M.S., Appl. Phys. Lett. 78, 3238 (2001).Google Scholar
7. Sipatov, A., Volobuev, V., Fedorov, A., Rogacheva, E., Krivulkin, I., Proc. 18th Int. Conf. on Thermoelectrics, (Baltimore, MD, August-September, 1999), pp.198200.Google Scholar
8. Rogacheva, E.I., Krivulkin, I.M., Nashchekina, O.N., Sipatov, A.Yu., Volobuev, V.V., Dresselhaus, M.S., Appl. Phys. Lett. 78, 1661 (2001).Google Scholar
9. Benjamin, J.D., Adkins, C.J., Cleve, J.E. Van, J. Phys. C 17, 559 (1984).Google Scholar
10. Adkins, C.J., J. Phys. C 20, 235 (1987).Google Scholar
11. Shklovski, B.I., Efros, A.L., Electronic properties of doped semiconductors (SpringerVerlag, Berlin, Heidelberg, New York, Tokyo, 1984), pp. 94136.Google Scholar
12. Segal, C., Gladkikh, A., Pilosof, M., Behar, H., Witcomb, M. and Rosenbaum, R., J. Phys.: Conden. Matter. 10, 123 (1998).Google Scholar
13. Lin, C.-H., Wu, G.Y., Physica B 279, 341 (2000).Google Scholar
14. Stauffer, D., Aharony, A., Introduction to percolation theory (Taylor & Fransis, London, Washington, DC, 1992), pp.89114.Google Scholar
15. Sivan, U. and Imry, Y., Phys. Rev. B 33, 551 (1986).Google Scholar
16. Davies, J.H., The Physics of Low-Dimensional Semiconductors. An Introduction (Cambridge University Press, 1998).Google Scholar