Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T10:26:35.612Z Has data issue: false hasContentIssue false

Temperature and humidity effects on the stability of on-plastic a-Si:H thin film transistors with various conduction channel layer thicknesses

Published online by Cambridge University Press:  01 February 2011

Jian Z Chen
Affiliation:
[email protected], National Taiwan University, Institute of Applied Mechanics, No.1 Sec.4 Roosevelts Rd., Taipei, 10617, Taiwan, +886-2-33665694, +886-2-33665694
I-Chun Cheng
Affiliation:
[email protected], National Taiwan University, Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, No.1 Sec.4 Roosevelt Rd., Taipei, 10617, Taiwan
Get access

Abstract

Stability is an important issue for the application of TFTs. In this paper, we present the effects of humidity and temperature on the stability of inverted-staggered back-channel-cut a-Si:H TFTs with various conduction channel layer thickness. We evaluated the stability of on-plastic TFTs of different conduction layer thicknesses made at a process temperature of 150°C on 51-μm thick Kapton polyimide foil substrates.. With conduction channel layer thickness of 50nm, humidity reversibly varies the characteristics of TFTs, but TFTs of conduction layer thickness greater than 100 nm is pretty immune to the humidity change. The temperature dependent stability and characteristics of TFTs were analyzed from 20°C to 60°C. Rising temperature from 20°C to 56°C, the threshold voltage (Vt) drops about 2 volts; on-off current ratio decreases by one order of magnitude mainly due to thermally excited carriers in the off-region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Conde, J. P. Alpuim, P. Chu, V. Thin Solid Films 430, 240 (2003).Google Scholar
2. Ahn, J.H. Kim, H.Sik, Lee, K. J. Zhu, Z. Menard, E. Nuzzo, R. G. Rogers, J. A. IEEE Electron Dev. Lett. 27, 460 (2006).Google Scholar
3. Kim, Y.H. Chung, C.H. Moon, J. Kim, G. H. Park, D.J. Kim, D.W. Lim, J. W. Yun, S. J. Song, Y.H. Lee, J. H. IEEE Electron Dev. Lett. 27, 579 (2006).Google Scholar
4. Won, S. H. Chung, J. K. Lee, C. B. Nam, H. C. Hur, J. H. and Jang, J. J. Electrochem. Soc. 151, G167 (2004).Google Scholar
5. Nathan, A. Kumar, A. Sakariya, K. Servati, P. Sambandan, S. Striakhilev, D. IEEE J. Solid State Circuit 39, 1477 (2004).Google Scholar
6. Sazonov, A. McArthur, C. J. Vac. Sci. Tech. A 22, 2052 (2004).Google Scholar
7. Gleskova, H. Wagner, S. Soboyejo, W. and Suo, Z. J. Appl. Phys. 92, 6224 (2002).Google Scholar
8. Chen, J. Z. Cherenack, K. Tsay, C. Cheng, I. C., Wagner, S. Electrochem. Solid-State Lett. 11, H26 (2008).Google Scholar
9. Street, R. A.. Hydrogenated amorphous silicon, Cambridge University Press, 1991.Google Scholar
10. Chen, J. Z. Cheng, I. C. submitted to Journal of Applied Physics.Google Scholar
11. Lemmi, F. Street, R. A. IEEE Trans. Electron Dev. 47, 2404 (2000).Google Scholar