Published online by Cambridge University Press: 10 February 2011
Electrokinetic phenomena in brine-saturated porous media, such as electroosmosis (fluid-flow induced by applied electric fields) and streaming current (the complementary process) depend on the density of ions adsorbed on the pore surface and the characteristic thickness of the diffuse space-charge layer λ. These, in turn, depend on brine chemistry, ambient temperature and possibly other parameters. We report on a series of measurements of natural rock and synthetic glass-bead samples: for one sample group, we varied the temperature over 0–50 ° C; for another, we changed the brine cation species. We find that the electrokinetic coefficients depend only weakly on temperature; this is shown to follow from the expected trends in λ, η, and σ. The chemistry dependence follows qualitatively but not quantitatively the predictions of the Debye-Hiickel approximation.