Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-03T02:48:15.531Z Has data issue: false hasContentIssue false

TEM Study of Neutron Irradiated Synroc

Published online by Cambridge University Press:  10 February 2011

Katherine L. Smith
Affiliation:
Materials Div., Australian Nuclear Science and Technology Organisation, Private Mail Bag I, Menai, NSW 2234, Australia
Mark G. Blackford
Affiliation:
Materials Div., Australian Nuclear Science and Technology Organisation, Private Mail Bag I, Menai, NSW 2234, Australia
Gregory R. Lumpkin
Affiliation:
Materials Div., Australian Nuclear Science and Technology Organisation, Private Mail Bag I, Menai, NSW 2234, Australia
Get access

Abstract

Synroc is a candidate waste form for the immobilisation of high level radioactive waste (HLW)[1]. It is polyphase titanate ceramic principally comprised of zirconolite, hollandite perovskite and rutile (nominally CaZrTi2O7, (BaxCsy)[(Ti3+, Al)2x+y(Ti4+)8−2x−y]O16), CaTiO3 and TiO2 respectively). Waste species substitute into the three former phases. In particular, actinides (ACTs) substitute onto the Ca and Zr sites in zirconolite and the Ca site in perovskite. Consequently over time, these phases will suffer alpha-recoil and alpha particle damage while hollandite and rutile will suffer alpha particle damage. The effect of radiation damage on the structure and consequently on the durability of Synroc's constituent phases is important to predictive modelling of Synroc's behaviour in the repository environment and risk assessment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Ewing, R.C., Weber, W.J. and Clinard, F.W. Jnr., Progress in Nuclear Energy, 29(2) (1995) 63.Google Scholar
2) Lumpkin, G.R., Hart, K.P., McGlinn, P.J., Payne, T.E., R. Giere and Williams, C.T. (1994) Radiochem. Acda 66/67,469474.Google Scholar
3) Clinard, F.W. Jnr., Rohr, D.L. and Roof, R.B. (1984) Nuc. Instr. Meths. Phys. Res. B1, 581586.Google Scholar
4) Woolfrey, J.L., Reeve, K.D. and Cassidy, D.J. (1982) JNM, 108&109, 739747.Google Scholar
5) Ewing, R.C. and Wang, L.M. (1992) Nuc. Instr. Meths. Phys. Res. B65, 319323.Google Scholar
6) Lumpkin, G.R., Smith, K.L. and Blake, R.G. (1996) Mat. Res. Symp. Proc., 412, 329336.Google Scholar
7) Smith, K.L., Zaluzec, N.J. and Lumpkin, G.R. Submitted to J. Nuclear Materials.Google Scholar
8) Lumpkin, G.R., Colella, M., Smith, K.L., Mitchell, R.H. and Larsen, A.O., this proceedings.Google Scholar
9) Reeve, K.D. and Woolfrey, J.L. (1980) J. Australian Ceram. Soc., 16, 1015.Google Scholar
10) Lumpkin, G.R., Smith, K.L., Blackford, M.G., Giere, R. and Williams, C.T., this proceedingsGoogle Scholar
11) Headley, T.J., Arnold, G.W. and Northrup, C.J.M. (1982) Scientific Basis for Nuclear Waste Management V, Elsevier Science Publishing Co., ed. Lutze, W., 739–388.Google Scholar