Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T09:40:37.780Z Has data issue: false hasContentIssue false

Telegraph Noise as A Probe of Microscopic Hydrogen Motion in Amorphous Silicon

Published online by Cambridge University Press:  15 February 2011

Lisa M. Lust
Affiliation:
The University of Minnesota, School of Physics and Astronomy, Minneapolis, MN 55455
J. Kakalios
Affiliation:
The University of Minnesota, School of Physics and Astronomy, Minneapolis, MN 55455
Get access

Abstract

Time traces of conductance fluctuations in the co-planar current of hydrogenated amorphous silicon (a-Si:H) display sharp jumps between discrete resistance levels, termed random telegraph switching noise (RTSN). Measurements of the temperature dependence and effects of light soaking of the RTSN in n-type doped a-Si:H are reported. The rise times between the two level fluctuators yield activation energies and attempt to hop frequencies for microscopic hydrogen motion which agree with those obtained from NMR experiments. Computer simulations of a dynamical percolation random resistor network support the suggestion that the RTSN arises from local diffusion processes altering the conductance of inhomogeneous current filaments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ng, Sze-Him, Surya, Charles, Brown, Elliot R., and Maki, Paul A., Appl. Phys. Lett., 62, 2262 (1993).Google Scholar
2. Kirton, M. J. and Uren, M. J., Adv. Phys., 38, 367 (1989).Google Scholar
3. Uren, M. J., Day, D. J., and Kirton, M. J., Appl. Phys. Lett., 47, 1195 (1985).Google Scholar
4. Rogers, C. T., Buhrman, R. A., Kroger, H., and Smith, L. N., Appl. Phys. Lett., 49, 1107 (1986).Google Scholar
5. Parman, C. E., Israeloff, N. E., and Kakalios, J., Phys. Rev. B, 44, 8391 (1991).Google Scholar
6. Tanielian, M., Phil. Mag. B, 45, 435 (1982).Google Scholar
7. Staebler, D. L., and Wronski, C. R., Appl. Phys. Lett., 31, 292 (1977).Google Scholar
8. Parman, C. E., Israeloff, N. E., and Kakalios, J., Phys. Rev. Lett., 69, 1097 (1992).Google Scholar
9. Restie, P. J., Weissman, M. B., Garfunkle, G. A., Pearah, P., and Morkoc, J., Phys. Rev. B, 34, 4419 (1986).Google Scholar
10. Hari, P., Taylor, P.C., and Street, R. A., in Amorphous Silicon Technology-1993, Thompson, M.J., Madan, A., Tanaka, K., and LeComber, P.G., eds. (Materials Research Society, Pittsburgh, 1993), 297, 297.Google Scholar
11. Hari, P., Taylor, P.C., and Street, R. A., J. Non-Cryst. Solids 164–166, 313 (1993).Google Scholar
12. Reimer, J. A., Vaughan, R. W., and Knights, J. C., Phys. Rev. B, 24, 3360 (1981).Google Scholar
13. Santos, P.V., Johnson, N.M., Street, R.A., Hack, M., Thompson, R., and Tsai, C. C., Phys. Rev. B, 47, 10244, (1993).Google Scholar
14. Street, R. A., Hack, M., and Jackson, W. B., Phys. Rev. B, 37, 4209 (1988).Google Scholar
15. Street, R. A., Tsai, C. C., Kakalios, J., and Jackson, J. B., Phil. Mag. B, 56, 305 (1987).Google Scholar
16. Lust, Lisa M., and Kakalios, J., Phys. Rev. E, 50, 3431 (1994).Google Scholar
17. Lust, Lisa M., and Kakalios, J., (submitted to PRL).Google Scholar