Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-01T00:16:10.438Z Has data issue: false hasContentIssue false

Tantalum Nitride for Copper Diffusion Blocking on Thin Film (BiSb)2Te3

Published online by Cambridge University Press:  18 December 2012

H. H. Hsu
Affiliation:
Green Energy and Environment Research Lab., Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C.
C. H. Cheng*
Affiliation:
Department of Mechatronic Technology, National Taiwan Normal University, Taipei, Taiwan, R.O.C
C. K. Lin
Affiliation:
Green Energy and Environment Research Lab., Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C.
K. Y. Chen
Affiliation:
Green Energy and Environment Research Lab., Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C.
Y. L. Lin
Affiliation:
Green Energy and Environment Research Lab., Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C.
Get access

Abstract

This study demonstrates the feasibility of introducing a TaN thin film as a copper diffusion barrier for p-type (BiSb)2Te3 thermoelectric material. Compared to conventional Ni diffusion barrier, remarkably little void generation in Cu bulk or near Cu/TaN interface originated from Cu penetration is observed for TaN barrier after suffering the thermal budget of close to soldering. Diffusion behaviors of the barriers were analyzed by transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS) to make a deep understanding in clarifying interface diffusion effects among the Cu electrode, the barrier layer, and the (BiSb)2Te3thermoelectric layer.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

DiSalvo, F. J., Science, 285, 703 (1999).CrossRefGoogle Scholar
Majumdar, A., Science, 303, 777 (2004).CrossRefGoogle ScholarPubMed
Fleurial, J. P., Borshchevsky, A., Ryan, M.A., Phillips, W., Kolawa, E., Kacisch, T. and Ewell, R., 16th International Conference on Thermoelectrics, IEEE (1997)Google Scholar
Kacsich, T, Kolawa, E, Fleurial, J P, Caillat, T and Nicolet, M-A, J. Phys. D: Appl. Phys., 31, 2406 (1998).CrossRefGoogle Scholar
Lan, Y. C., Wang, D. Z., Chen, G. and Ren, Z. F., Appl. Phys. Lett. 92, 101910 (2008).CrossRefGoogle Scholar
Bludska´, J., Karamazov, S., Navra´til, J., Jakubec, I., Hora´k, J., Solid State Ionics, 171, 251 (2004).CrossRefGoogle Scholar
Lin, W. P., Wesolowski, D. E., Lee, C. C., J Mater Sci: Mater Electron, 22, 1313 (2011).Google Scholar
Lin, T. Y., Liao, C. N. and Wu, A. T., Journal of Electronic Materials, 41, 153 (2012)CrossRefGoogle Scholar
Gupta, R. P., Iyore, O. D., Xiong, K., White, J. B., Cho, K., Alshareef, H. N. and Gnade, B. E., Electrochemical and Solid-State Letters, 12, H395 (2009).CrossRefGoogle Scholar
Bae, N. H., Han, S., Lee, K. E., Kim, B. and Kim, S.T., Current Applied Physics, 11, S40 (2011).CrossRefGoogle Scholar
da Silva, L. W. and Kaviany, M., Journal of Microelectromechanical Systems, 14, 1110 (2005).CrossRefGoogle Scholar
Gupta, R. P., Xiong, K., White, J. B., Cho, K., Alshareef, H. N. and Gnade, B. E., J. Electrochem. Soc., 157, H666 (2010).CrossRefGoogle Scholar
Mah, A. D. and Pankratz, L. B., US Bureau of Mines, Bulletin, 668, 125 (1976)Google Scholar