Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T05:20:16.877Z Has data issue: false hasContentIssue false

Tailoring nanopores for efficient sensing of different biomolecules

Published online by Cambridge University Press:  01 February 2011

Oukhaled AbdelGhani
Affiliation:
Laurent Bacri
Affiliation:
Eric Bourhis
Affiliation:
Birgetta schiedt
Affiliation:
Ali Madouri
Affiliation:
Gilles Patriarche
Affiliation:
Philippe Guegan
Affiliation:
Loic Auvray
Affiliation:
Juan Pelta
Affiliation:
Jacques Gierak
Affiliation:
Get access

Abstract

Highly Focused Ion Beams (FIB) are used to produce in one step large quantities of solid state nanopores drilled in thin dielectric films with high reproducibility and well controlled morphologies. We explore both the production of nanopores of various diameters and study their applicability to different biological molecules such as DNA, or folded and unfolded proteins, and then we compare their transport properties. We also report on the translocation of Fibronectin which an original experiment made possible is using the methodology described in this article.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gurbunov, A.A. and Skvotsov., A. M Adv. Coll. Interf. Sci, 62:31108, (1995).10.1016/0001-8686(95)00270-ZGoogle Scholar
[2] Citovsky, V. and Zambryski, P.. Annu. Rev. Microbiol., 47 :167, (1978).10.1146/annurev.mi.47.100193.001123Google Scholar
[3] Lodish, H.. Molecular Cell Biology. Scientific Americain books, New-York, (2003).Google Scholar
[4] , Lambert, Letellier, L., Gilbart, W.M, and Rigaud, J.L. Proc. Nat. Acad. Sci, 97 :72487253, (2000).10.1073/pnas.130187297Google Scholar
[5] Kasianowicz, J.J, Brandin, E., Branton, D., and Deamer, D.W. Nat. Acad. Sci, 93 :1377013773, (1996).Google Scholar
[6] Coulter, W.H.. US Patent N°2656508, (1953).Google Scholar
[7] Akeson, M., Branton, D., Kasianowicz, J.J, Brandin, E., and Deamer, D.W. Biophys J, 77 :3227, (1999).Google Scholar
[8] Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M.J., Golovchenko, J. A., Nature 412 166169, (2001)Google Scholar
[9] Healy, K., Schiedt, B., Morrison, A.P., Nanomedicine 2, 875 (2007)Google Scholar
[10] Keyser, U. F., Koeleman, B. N.; S.van Dorp; Krapf, D.; Smeets, R. M. M; Lemay, S. G; Dekker, N. H.; Dekker, C., Nat. Phys, 2 (7), 473477, (2006).Google Scholar
[11] McNally, B.; Wanunu, M.,; Meller, A., Nano Lett., 8 (10), 34183422 (2008).Google Scholar
[12] Smeets, R. M., Kowalczyk, S. W.; Hall, A. R.; Dekker, N. H.; Dekker, C.. Nano Lett 9, 30893095 (2009).Google Scholar
[13] Talaga, D.S. and Li, J. J. Am. Chem. Soc 131 (26) 92879297 (2009)Google Scholar
[14] Schiedt, B., Auvray, L., Bacri, L., Biance, A.-L., Madouri, A., Bourhis, E., Patriarche, G., Pelta, J., Jede, R. and Gierak, J., Mater. Res. Soc. Symp. Proc. Vol. 1191 (2009)Google Scholar
[15] Pelta, J., Berry, H., Fadda, G. C., Pauthe, E., and Lairez, D., Biochemistry 39, 5146, (2000)Google Scholar
[16] Betton, J. M. and Hofnung, M., J. Biol. Chem. 271, 8046, (1996).Google Scholar
[17] Oukhaled, G., Mathé, J., Biance, A. L., Bacri, L., Betton, J. M., Lairez, D., Pelta, J., and Auvray, L., Phys. Rev. Lett. 98, 158101 (2007).Google Scholar
[18] Spurlino, J. C., Lu, G.Y., and Quiocho, F. A., J. Biol. Chem. 266, 5202 (1991).Google Scholar
[19] Ganesh, C., Shah, A. N., Swaminathan, C. P., Surolia, A., and Varadarajan, R., Biochemistry 36, 5020 (1997).Google Scholar