Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T03:15:56.845Z Has data issue: false hasContentIssue false

Synthesis, Thermal Behavior, and Second-Order Nonlinear Optical Properties of Conjugated, Acceptor/Donor Compounds

Published online by Cambridge University Press:  25 February 2011

James F. Wolfe
Affiliation:
Lockheed Missiles & Space Co., Inc., 3251 Hanover St., Palo Alto, CA 94304
Susan P. Ermer
Affiliation:
Lockheed Missiles & Space Co., Inc., 3251 Hanover St., Palo Alto, CA 94304
Steven M. Lovejoy
Affiliation:
Lockheed Missiles & Space Co., Inc., 3251 Hanover St., Palo Alto, CA 94304
Doris S. Leung
Affiliation:
Lockheed Missiles & Space Co., Inc., 3251 Hanover St., Palo Alto, CA 94304
Kenneth P. Aron
Affiliation:
Lockheed Missiles & Space Co., Inc., 3251 Hanover St., Palo Alto, CA 94304
Glenn A. Hansen
Affiliation:
Lockheed Missiles & Space Co., Inc., 3251 Hanover St., Palo Alto, CA 94304
Steven P. Bitler
Affiliation:
SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025
Get access

Abstract

New noncentrosymmetric compounds having both electron-accepting and electron-donating substituents on a conjugated, aromatic heterocyclic structure were synthesized and their spectroscopic, thermal, and solubility properties were determined. D.C. electric field-induced second harmonic generation (EFISH) experiments were performed to provide values of the second-order nonlinear optical susceptibility/dipole moment product βμ. Long alkyl substituents were required in heterocycle-containing compounds for sufficient solubility to conduct EFISH analysis. 2,4-Dinitro-substitution on these imine-linked materials gave the highest βμ in the series.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Oudar, J.L., J. Chem. Phys. 67, 446 (1977);CrossRefGoogle Scholar
Singer, K.D. Sohn, J.E., King, L.A., Gordon, H.M., Katz, H.E., and Dirk, C.W., J. Opt. Soc. Am. B6, 1339 (1989).CrossRefGoogle Scholar
2. Teng, C.C. and Garito, A.F., Phys. Rev. B28, 6766 (1983).CrossRefGoogle Scholar
3. Kehrman, F. and Betsch, G., Chem. Ber. 30, 2096 (1897).CrossRefGoogle Scholar
4. Albright, J.D., DeVries, V.G., Largis, E.E., Miner, T.G., Reich, M.F., Schaffer, S.A., Sheperd, R.G., and Upeslacis, J., J. Med. Chem. 26 (10), 1378 (1983).CrossRefGoogle Scholar
5. Wolfe, J.F., Loo, B.H., Sanderson, R.A., and Bitler, S.P., in Nonlinear Optical Properties of Polymers, edited by Heeger, A.J., Orenstein, J., and Ulrich, D.R. (Mater. Res. Soc. Proc. 109, Pittsburgh, PA 1988) pp. 291300.Google Scholar
6. Maslii, L.K., Nikol’skaya, G.S., Umetskaya, M.N., and Tikhomolov, A.A., Zh. Anal. Khim. 38 (2), 269 (1983) [J. Anal. Chem. USSR 38 (2), 215 (1983)].Google Scholar
7. Gawinecki, R. and Muzalewski, F., Pol. J. Chem. 58 (10–12), 1091 (1984).Google Scholar
8. Sachs, F. and Kempf, R., Chem. Ber. 35, 1224 (1902).CrossRefGoogle Scholar
9. Bren’, V.A., Minkin, V.I., and Tskhadadze, K.A., Zh. Org. Khim. 12 (4), 830 (1976) [J. Org. Chem. USSR 12 (4), 833 (1976)].Google Scholar
10. Gawinecki, R. and Muzalewski, F., Pol. J. Chem. 56 (6), 1177 (1980).Google Scholar