Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T15:53:12.975Z Has data issue: false hasContentIssue false

Synthesis, Structure and Applications of TiO2 Gels

Published online by Cambridge University Press:  25 February 2011

J. Livage*
Affiliation:
Spectrochimie du Solide, Université Pierre et Marie Curie, 4 place Jussieu, 75230 Paris Cedex 05, France.
Get access

Abstract

TiO2 gels are usually obtained through hydrolysis of titanium alkoxides. Chemical additives can however react with the precursor at a molecular level and therefore modify the hydrolysis-condensation reactions. Several examples will be described :acetic acid, acetylacetone or Cr(acac)3. The whole sol-gel process is followed all the way from the precursors to the gel and each step is characterized by spectroscopic experiments (Infra-red, N.M.R, E.S.R.). Some electronic properties of TiO2 gels are then described. Chemical addi-tives allow an optimization of thý sol-gel process according to each speci-fic applications : electrochromic display devices, photoanodes or photoche-mical reactions.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klein, L.C., Ann. Rev. Mater. Sci., 15, 227 (1985).Google Scholar
2. Iler, R.K., the Chemistry of Silica (Wiley, New-York 1979).Google Scholar
3. Mazdiyasni, K.S., Ceramics International, 8, 42 (1982).Google Scholar
4. Wallace, S. and Hench, L.L., in Better Ceramics through Chemistry, edited by Brinker, C.J., Clark, D.E., Ulrich, D.R. (North-Holland 1984) p. 47.Google Scholar
5. Ulrich, D.R., Ceramic Bulletin, 64, 1444 (1985).Google Scholar
6. Barringer, E.A. and Bowen, H.K., Langmuir, 1, 414 (1985).CrossRefGoogle Scholar
7. Yan, M.F. and Rhodes, W.W., Mater. Sci. and Eng., 61, 59 (1983).Google Scholar
8. Doeuff, S., Henry, M., Sanchez, C. and Livage, J., J. Non-Cryst. Solids, (submitted).Google Scholar
9. Nakamoto, K., in Infra-red and Raman spectra of Inorganic and Coordination Compounds, 3rd Edition (John Wiley, New-York, 1978).Google Scholar
10. Thiele, Von K.H. and Panse, M., Z. Anorg. Allg. Chem., 441, 23 (1978).CrossRefGoogle Scholar
11. Mc Devitt, N.T. and Baun, W.L., Spectrochimica Acta, 20, 799 (1964).Google Scholar
12. Duonghong, D., Borgarello, E. and Grätzel, M., J. Am. Chem. Soc., 103, 4685 (1981).CrossRefGoogle Scholar
13. Kordas, G., Weeks, R.A. and Klein, L.C., J. of Non-Cryst. Solids, 71, 327 (1985).CrossRefGoogle Scholar
14. Wolf, A.A., Friebele, E.J. and Tran, D.C., J. of Non-Cryst. Solids, 71, 345 (1985).Google Scholar
15. Doeuff, S., Henry, M., Sanchez, C. and Livage, J., J. of Non-Cryst. Solids (submitted).Google Scholar
16. Barry, T.I., Solid State Comm., 4, 123 (1966).Google Scholar
17. Gerritsen, H.J., Harrison, S.E., Lewis, H.R. and Wittke, J.P., Phys. Rev. Letters, 2, 153 (1959).Google Scholar
18. Ohzuku, T. and Hirai, T., Electrochemica Acta, 27, 1263 (1982).Google Scholar
19. Dislich, H. and Hinz, P., J. Non-Cryst. Solids, 48, 11 (1982).CrossRefGoogle Scholar
20. Kochev, K.D., Solar Energy Materials, 12, 249 (1985).Google Scholar
21. Ghosh, A.K. and Maruska, H.P., J. Electrochem. Soc., 124, 1516 (1977).CrossRefGoogle Scholar
22. Minoura, H., Nasu, M. and Takashi, Y., Ber. Bunsenges Phys. Chem., 89, 1064 (1985).Google Scholar
23. Grätzel, M., Acc. Chem. Res., 14, 376 (1981).Google Scholar
24. Henglein, A., Pure and Appl. Chem., 56, 1215 (1984).Google Scholar
25. Jaeger, C.D. and Bard, A., J. Phys. Chem., 83, 3146 (1979).Google Scholar