Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T16:27:45.337Z Has data issue: false hasContentIssue false

The Synthesis of“1223”TL-CA-BA-CU-Oxide Superconducting Films Via the Reaction of Silver-Containing Spray Deposited Oxide Precursors with Thallium Oxide Vapor in a Two-Zone Reactor

Published online by Cambridge University Press:  26 February 2011

J. A. DeLuca
Affiliation:
G. E. Corporate Research and Development Ceneter, Schenectady, N. Y.
P. L. Karas
Affiliation:
G. E. Corporate Research and Development Ceneter, Schenectady, N. Y.
J. E. Tkaczyk
Affiliation:
G. E. Corporate Research and Development Ceneter, Schenectady, N. Y.
C. L. Briant
Affiliation:
G. E. Corporate Research and Development Ceneter, Schenectady, N. Y.
M. F. Garbauskas
Affiliation:
G. E. Corporate Research and Development Ceneter, Schenectady, N. Y.
P. J. Bednarczyk
Affiliation:
G. E. Corporate Research and Development Ceneter, Schenectady, N. Y.
Get access

Abstract

Superconducting films of“1223”Tlx Ca2Ba2Cu3Oy (0.65<×<l.00) have been prepared on polycrystalline yttria stabilized zirconia substrates via the reaction of thallium oxide vapor with spray-deposited Ca-Ba-Cu-oxide films containing silver. The silver addition permits the formation at 860C of oriented, interconnected polycrystalline superconducting films with Tc(0) values of 104–107K. Samples have been prepared routinely with 77K zero-field dc transport critical current densities >10,000A/cm2 with values as high as 105,000A/cm2 having been measured. The range in Jc values measured is believed to be related, at least in part, to inhomogeneities in the films. The excellent in-field characteristics of the“1223”thick films are reflected in the behavior of the“105,000A/cm” sample for which J >10,000A/cm was measured at 60K in a 2 Tesla field applied parallel to the crystallographic c-axis

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, D. H., Grey, K. E., Kampwirth, R. T., Smith, J. C., Richeson, D. S., Marks, T. J., Kang, J. H., Talvacchio, J., and Eddy, M., Physica C 177, 431 (1991).Google Scholar
2. Negama, M., Hikata, T., Kato, T., and Sato, K., Jap. J. Appl. Phys. 30(8A), L1384 (1991).Google Scholar
3. Doi, T., Okada, M., Soeta, A., Yuasa, T., Aihara, K., Kamo, T., and Matsuda, S., Physica C 183, 67 (1991).Google Scholar
4. Kamo, T., Doi, T., Soeta, A., Yuasa, T., Inoue, N., Aihara, K., and Matsuda, S., Appl. Phys. Lett. 59(24). 3186 (1991).Google Scholar
5. Liu, R. S., Zheng, D. N., Loram, J. W., Mirza, K. A., Campbell, A. M., and Edwards, P. P., Appl. Phys. Lett. 60(8) 1019–21 (1992).Google Scholar
6. Tkaczyk, J. E., Briant, C. L., DeLuca, J. A., Hall, E. L., Karas, P. L., and Lay, K. W., J. Mater. Research 7, 1 (1991).Google Scholar
7. DeLuca, J. A., Garbauskas, M. F., Bolon, R. B., McMullen, J. G., Balz, W. E., and Karas, P. L., J. Mater. Research 6, 1415 (1991).Google Scholar
8. Deslandes, F., Raveau, B., Dubots, P., and Legat, D., Solid State communications 71(5). 407 (1989).Google Scholar
9. Polonka, J., Xu, M., Li, Q., Goldman, A. I., and Finnemore, D. K., Appl. Phys. Lett. 59(27). 3640 (1991).Google Scholar
10. Ekin, J. W., Larson, T. M., Hermann, A. M., Sheng, Z. Z., Togano, K., and Kumakura, H., Physica C 160, 489 (1989).Google Scholar
11. Peterson, R. L. and Ekin, J. W., Phys. Rev. B 37, 9848 (1988).Google Scholar