Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T11:50:20.350Z Has data issue: false hasContentIssue false

Synthesis of Tin Oxide Nanoparticles Using a Mini-arc Plasma Source

Published online by Cambridge University Press:  15 February 2011

Ganhua Lu
Affiliation:
Department of Mechanical Engineering and Laboratory for Surface Studies
Junhong Chen
Affiliation:
Department of Mechanical Engineering and Laboratory for Surface Studies
Marija Gajdardziska-Josifovska
Affiliation:
Department of Physics and Laboratory for Surface Studies University of Wisconsin-Milwaukee Milwaukee, WI 53211
Get access

Abstract

Miniaturized electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. Use of tin oxide nanoparticles as sensing elements has been proved to significantly improve both the response time and the sensitivity of gas sensors or electronic noses. In this paper, we report the synthesis of pure tin oxide nanoparticles using a simple, convenient, and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS). The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM) for morphology, crystal structure, and defects. Non-agglomerated rutile tin oxide (SnO2) nanoparticles as small as a few nm have been produced, with rounded shapes and some faceting on the lowest energy surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Summitt, R., Marley, J.A., and Borrelli, N.F., J. Phys. Chem. Solids. 25(12), 1465 (1964).Google Scholar
2. Shimizu, Y. and Egashira, M., MRS Bulletin. 24(6), 18 (1999).Google Scholar
3. Williams, D.E., Conduction and Gas Response of Semiconductor Gas Sensors, in Solid State Gas Sensors, edited by Tofield, B.C. (Adam Hilger, Bristol 1987), p. 71.Google Scholar
4. Chang, S.C., J. Vac. Sci. Technol. 17(1), 366 (1980).Google Scholar
5. Kennedy, N.K., Kruis, F.E., Fissan, H., Mehta, B.R., Stappert, S., and Dumpich, G., J. Appl. Phys. 93(1), 551 (2003).Google Scholar
6. Su, M., Li, S., and Dravid, V.P., J. Am. Chem. Soc. 125, 9930 (2003).Google Scholar
7. Shin, H.S., Yang, H.J., Kim, S.B., and Lee, M.S., J. Colloid Interf. Sci. 274(1), 89 (2004).Google Scholar
8. Bognolo, G., Adv. Colloid Interfac. 106, 169 (2003).Google Scholar
9. Kruis, F.E., Fissan, H., and Peled, A., J. Aerosol Sci. 29(5-6), 511 (1998).Google Scholar
10. Siegel, R.W., Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 168(2), 189 (1993).Google Scholar
11. Flagan, R.C. and Lunden, M.M., Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 204, 113 (1995).Google Scholar
12. Wang, S.C. and Flagan, R.C., Aerosol Sci. Technol. 13, 230 (1990).Google Scholar
13. Wiedensohler, A., J. Aerosol Sci. 19(3), 387 (1988).Google Scholar
14. Yun, C.M., Otani, Y., and Emi, H., Aerosol Sci. Technol. 26, 389 (1997).Google Scholar
15. Krinke, T.J., Deppert, K., Magnusson, M.H., Schmidt, F., and Fissan, H., J. Aerosol Sci. 33, 1341 (2002).Google Scholar
16. Dixkens, J. and Fissan, H., Aerosol Sci. Technol. 30, 438 (1999).Google Scholar
17. Chen, D.R., Pui, D.Y.H., Hummes, D., Fissan, H., Quant, F.R., and Sem, G.J., J. Aerosol Sci. 29 (5-6), 497 (1998).Google Scholar
18. Leite, E.R., Giraldi, T.R., Pontes, F.M., Longo, E., Beltran, A., and Andres, J., Appl. Phys. Lett. 83(8), 1566 (2003).Google Scholar
19. Pan, X. and Zheng, J.Z., Mat. Res. Soc. Symp. Proc. 472(Materials Research Society), 87 (1997).Google Scholar