Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T09:45:12.245Z Has data issue: false hasContentIssue false

Synthesis of Submicron-Sized, Monodisperse Spherical V2O5 Particles

Published online by Cambridge University Press:  15 February 2011

S. Yamamoto
Affiliation:
Institute for Chemical Research, Kyoto University Uji, Kyoto 611-0011, Japan
M. Takano
Affiliation:
Institute for Chemical Research, Kyoto University Uji, Kyoto 611-0011, Japan
Y. Shimakawa
Affiliation:
Institute for Chemical Research, Kyoto University Uji, Kyoto 611-0011, Japan
Get access

Abstract

We have succeeded in preparing submicron-sized monodisperse spherical V2O5 particles by hydrolysis of vanadium isopropoxide (VO(OiPr)3) in acetone/pyridine (Py) mixture solution for the first time. These particles had almost perfect spherical shape and were non-agglomerated. Their size could be easily controlled from 200 to 800 nm by changing the concentration of pyridine while keeping narrow size distribution (standard deviation, ca. 7%). Elemental and Fourier Transform Infrared analyses revealed that these particles have a composition of V2O5.xPy.yH2O (x ≈ 0.8, y ≈ 0.9) independent of their size. X-ray diffraction studies revealed that these particles have layered structure similar to that of V2O5.nH2O xerogel with an interlayer spacing of ca. 1.05 nm independent of their size, possibly due to the intercalation of H2O and pyridine between the V2O5 sheets.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.For a review, see (a) Matijevié, E. Acc. Chem. Res. 14, 22 (1981). (b) Sugimoto, T. Adv. Colloid Interface Sci. 28, 65 (1987). (c) Overbeek, J. T.G. Adv. Colloid Interface Sci. 15, 251 (1982).Google Scholar
2.(a) Wang, W.; Gu, B.; Liang, L.; Hamilton, W. A. J. Phys. Chem. B 107, 12113 (2003). (b) Colvin, V. L. MRS Bulletin 637 (2001). (c) López, C. Adv. Mater. 15, 1679 (2003).Google Scholar
3.(a) Osseo-Asare, K.; Arriagada, F. J. Colloid and Surf. 50, 321 (1990). (b) Ogihara, T.; Wada, Y.; Yoshida, T.; Yanagawa, T.; Ogata, N.; Yoshida, K. Ceramics International 19, 159 (1993). (c) Minehan, W. T.; Messing, G. L. J. Non-Cryst. Solids 121, 375 (1990). (d) Hardy, A. B.; Rhine, W. E.; Bowen, H. K. J. Am. Ceram. Soc. 76, 97 (1993).Google Scholar
4. Matijevié, E. Chem. Mater. 5, 412 (1993).Google Scholar
5. Ishizawa, H.; Sakurai, O.; Mizutani, N.; Kato, M. Am. Ceram. Soc. Bull. 65, 1399 (1986).Google Scholar
6.(a) Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 26, 62 (1968). (b) Philipse, A. P.; Vrij, A. J. Colloid Interface Sci. 128, 121 (1989). (c) Blaaderen, A van; Vrij, A. Langmuir 8, 2921 (1992).Google Scholar
7.(a) Barringer, E. A.; Bowen, H. K. J. Am. Ceram. Soc. 65, C199 (1982). (b) Jean, J. H.; Ring, T. A. Langmuir, 2, 414 (1986). (c) Jiang, X.; Herricks, T.; Xia, Y. Adv. Mater. 15, 1205 (2003).Google Scholar
8. Ogihara, T.; Mizutani, M.; Kato, M. J. Am. Ceram. Soc. 72, 421 (1987).Google Scholar
9. Ogihara, T.; Ikemoto, T.; Mizutani, N.; Kato, M.; Mitarai, Y. J. Mater. Sci. 21, 2771 (1986).Google Scholar
10.(a) Ogihara, T.; Kaneko, H.; Mizutani, N.; Kato, M. J. Mater. Sci. Lett. 7, 867 (1988). (b) Hirashima, H.; Ohishi, E.; Nakagawa, M. J. Non-Cryst. Solids 121, 404 (1990).Google Scholar
11. Forzatti, P. Catal. Today. 62, 51 (2000).Google Scholar
12. Poizot, P.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nature 407, 496 (2000).Google Scholar
13. Talledo, A.; Granqvist, C. G. J. Appl. Phys. 77, 4655 (1995).Google Scholar
14. Micocci, G.; Serra, A.; Tepore, A.; Capone, S.; Rella, R.; Siciliano, P. J. Vac. Sci. Technol. A 15, 34 (1997).Google Scholar
15. Gu, G.; Schmid, M.; Chiu, P.-W.; Minett, A.; Fraysse, J.; Kim, G.-T.; Roth, S.; Kozlov, M.; Muíoz, E.; Baughman, R. H. Nature Mater. 2, 316 (2003).Google Scholar
16.(a) , Livage, J. Chem. Mater. 3, 578 (1991). (b) Livage, J. Cood. Chem. Rev. 178-180, 999 (1998).Google Scholar
17.There are two possible sources of H2O in the present experiments. One is the employed reagents, i.e., acetone and pyridine, since they are not anhydrous reagent. The amounts of H2O contained in these reagents are less than 0.01 wt% (pyridine, Wako pure chemical) and 0.4 wt% (acetone, Nacalai Tesque) according to the suppliers. The other is surrounding air since we performed all the processes under air. Thus, the exact amount of H2O included in the reaction solution is not clear in the present experiments. Effects of H2O are now under investigation [18].Google Scholar
18. Yamamoto, S.; Takano, M. to be published.Google Scholar
19.Since the exact amount of H2O included in the reaction solution is not clear in the present experiments, there is a possibility of the contribution of water content with may vary as a function of the fraction of pyridine in the mixed medium.Google Scholar
20.(a) Kanatzidis, M. G.; Wu, C.-G.; Marcy, H. O.; Kannewurf, C. R. J. Am. Chem. Soc. 111, 4139 (1989). (b) Wu, C.-G.; DeGroot, D. C.; Marcy, H. O.; Schindler, J. L.; Kannewurf, C. R.; Liu, Y.-J.; Hirpo, W.; Kanatzidis, M. G. Chem. Mater. 8, 1992 (1996).Google Scholar