Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T00:57:15.731Z Has data issue: false hasContentIssue false

Synthesis of SBA-15/MCM-41 bimodal mesoporous silica

Published online by Cambridge University Press:  14 April 2016

Leyla Y. Jaramillo
Affiliation:
Grupo Calidad, Metrología y Producción, Instituto Tecnológico Metropolitano, 050015, Medellín, Colombia Grupo Ciencia de Materiales Avanzados, Universidad Nacional de Colombia. Medellín, Colombia
Wilson A. Henao
Affiliation:
Grupo Materiales Avanzados y Energía, Instituto Tecnológico Metropolitano, 050015, Medellín, Colombia
Elizabeth Pabón-Gelves
Affiliation:
Grupo Ciencia de Materiales Avanzados, Universidad Nacional de Colombia. Medellín, Colombia
Get access

Abstract

Nanostructured silica materials with different morphologies and adjustable pore size have been studied by researches worldwide for several applications such as catalysis, separation, adsorption, and templates for new materials. The main interest in the development of these materials is to obtain a structure with a specific combination of pore sizes for a particular application. The morphology and textural properties of pores can be easily changed with the modification of the synthesis parameters, among these, the choice of surfactant or structure directing agent (SDA).

Accordingly, in this work, three types of nanostructured silica with different mesoporosity were synthesized by using of CTAB and Pluronic 123 as structure directing agents: SBA-15 and MCM-41 unimodal mesoporous silica and SBA-15/MCM-41 bimodal mesoporous silica.

To evaluate the effect of surfactant on the morphology and textural properties of pores, the materials were characterized by scanning electron microscopy (SEM), X-ray Diffraction (XRD) and nitrogen sorption (BET).

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Singh, L. P., Bhattacharyya, S. K., Kumar, R., Mishra, G., Sharma, U., Singh, G. and Ahalawat, S., Advances in Colloid and Interface Science 214, 1737 (2014)10.1016/j.cis.2014.10.007CrossRefGoogle Scholar
Mesa, M., Sierra, L., Patarin, J. and Guth, J. L., Solid State Sciences 7, 990997 (2005)10.1016/j.solidstatesciences.2005.04.006CrossRefGoogle Scholar
Zhang, F., Yan, Y., Yang, H., Meng, Y., Yu, Ch., Tu, B. and Zhao, D., J. Phys. Chem. B 109, 87238732 (2005).10.1021/jp044632+CrossRefGoogle Scholar
Thielemann, J. P., Girgsdies, F., Schlögl, R. and Hess, Ch., Beilstein J. Nanotechnol 2, 110118 (2011).10.3762/bjnano.2.13CrossRefGoogle Scholar
Poyraz, A. S. and Dag, O., J. Phys. Chem. C 113, 1859618607 (2009)10.1021/jp907303aCrossRefGoogle Scholar
Sun, J. H., Shan, Z., Maschmeyer, T. and Coppens, M. O., Langmuir 19, 83958402 (2003)10.1021/la0351156CrossRefGoogle Scholar
Ozlem, S., Kuang, D., Thommes, M. and Smarsly, B., Langmuir 22, 23112322 (2006)Google Scholar
Zhao, D., Feng, J., Huo, Q., Melosh, N., Frederickson, G. H., Chmelka, B. F. and Stucky, G. D., Science 279, 548 (1998).10.1126/science.279.5350.548CrossRefGoogle Scholar
Moreno, J., Van Grieken, R., Carrero, A. and Paredes, B., Macromolecular Symposia 302, 198207 (2011).10.1002/masy.201000059CrossRefGoogle Scholar
Kruk, M. and Jaroniec, M., Chem. Mater. 12, 19611968 (2000).10.1021/cm000164eCrossRefGoogle Scholar