Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T04:24:25.705Z Has data issue: false hasContentIssue false

Synthesis of Resorcinol Formaldehyde Aerogel Using UV Photo-Initiators for Inertial Confinement Fusion Experiments

Published online by Cambridge University Press:  10 March 2011

R.R. Paguio
Affiliation:
General Atomics, PO Box 85608, San Diego, California 92186-5608, U.S.A.
K.M. Saito
Affiliation:
General Atomics, PO Box 85608, San Diego, California 92186-5608, U.S.A.
J.F. Hund
Affiliation:
General Atomics, PO Box 85608, San Diego, California 92186-5608, U.S.A.
R. M. Jimenez
Affiliation:
General Atomics, PO Box 85608, San Diego, California 92186-5608, U.S.A.
Get access

Abstract

Resorcinol formaldehyde (R/F) aerogels have been used in a variety of laser targets for Inertial Confinement Fusion (ICF) experiments in the form of thin films, cast shapes such as cylinders and cubes, and hollow and solid microspheres. Besides ICF experiments, R/F aerogel can be used for capacitors, batteries, thermal insulation, absorption/filtration media, and chromatographic packing applications. Traditionally, R/F aerogel is synthesized using a 2-step (base/acid catalysis) polycondensation reaction. We have developed a novel process to synthesize the R/F aerogel using free radical UV initiator at room temperature in 10 minutes using a UV light source. This paper will review this process, which was developed to synthesize R/F aerogels using UV-free radical initiators. Scanning electron microscopy results will also be discussed to show that the aerogel pore structure is similar to traditional R/F aerogels. Fabrication of solid and hollow microspheres for ICF experiments using this R/F aerogel synthesis technique and the technique’s limitations will also be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Durairaj, R.B., “Resorcinol: Chemistry, Technology & Applications,” Springer, Germany, (2005).Google Scholar
2. Pekala, R.W., et al. , J. Mater. Sci. 24, 3221 (1989).10.1007/BF01139044Google Scholar
3. Sethian, J.D., et al. , Nucl. Fusion 43, 1693 (2003).10.1088/0029-5515/43/12/015Google Scholar
4. Perkins, J., et al. , HAPL Program Website: http://aries.ucsd.edu/HAPL/DOCS/HAPLtargetSpecs.doc Google Scholar
5. Lambert, S.M., et al. , J. Appl. Polym. Sci. 65, 2111 (1997).10.1002/(SICI)1097-4628(19970912)65:11<2111::AID-APP7>3.0.CO;2-K3.0.CO;2-K>Google Scholar
6. Nikroo, A., et al. , Fusion Sci. Technol. 45, 84 (2004).10.13182/FST04-A432Google Scholar
7. Paguio, R.R., et al. , Fusion Sci. Technol. 51, 682 (2007).10.13182/FST51-682Google Scholar
8. Paguio, R.R., et al. , accepted for publication in Fusion Sci. Technol. (2010).Google Scholar
9. Pohl, H., Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields, Cambridge University Press, Cambridge (1978).Google Scholar
10. Jones, T., Electromechanics of Particles, Cambridge University press, New York (1995).10.1017/CBO9780511574498Google Scholar
11. Bei, Z.-M., et al. , Applied Physics Lett. 93, 184101 (2008).10.1063/1.3013577Google Scholar
12. Bei, Z.-M., et al. , J. of Electrostatics 67, 173, (2009).10.1016/j.elstat.2008.12.013Google Scholar
13. Brunauer, S., et al. , J. Am. Chem. Soc. 60, 309 (1983).10.1021/ja01269a023Google Scholar
14. Kolczak, U., et al. , J. Am. Chem. Soc. 118, 6477 (1996).10.1021/ja9534213Google Scholar
15. Schafer, D.W., et al. , J. Non-Crst. Solids 186, 159 (1995).10.1016/0022-3093(95)00043-7Google Scholar
16. Frederick, C.A., et al. , Fusion Sci. Technol. 49, 657 (2006).10.13182/FST06-A1182Google Scholar
17. Mulik, S., et al. , Chem. Mater. 19, 6138 (2007).10.1021/cm071572mGoogle Scholar