Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T04:11:41.170Z Has data issue: false hasContentIssue false

Synthesis of Nanoporous Rutile Nanocrystals under Mild Conditions

Published online by Cambridge University Press:  09 February 2015

Kairat Sabyrov
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A.
Virany M. Yuwono
Affiliation:
Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, U.S.A.
R. Lee Penn*
Affiliation:
Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, U.S.A.
Get access

Abstract

Single-crystalline rutile with porous and complex structure can be produced by tuning reaction conditions so as to maintain low titania solubility. X-ray diffraction, high-resolution transmission electron microscopy, and cryogenic transmission electron microscopy results are consistent with the hypothesis that oriented aggregation of anatase crystals precedes rutile nucleation and growth from anatase nanocrystal interfaces. The product rutile retains morphological and microstructure features consistent with an aggregation-based phase transformation because coarsening, or monomer-by-monomer growth, is suppressed under these conditions of low titania solubility.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhang, H., and Banfield, J. F., Chem. Rev. 114, 9613 (2014).CrossRefGoogle Scholar
Sang, L., Zhao, Y., and Burda, C., Chem. Rev. 114, 9283 (2014).CrossRefGoogle Scholar
Kapilashrami, M., Zhang, Y., Liu, Y. S., Hagfeldt, A., and Guo, J., Chem. Rev. 114, 9662 (2014).CrossRefGoogle Scholar
Diebold, U., Surf. Sci. Rep. 48, 53 (2003).CrossRefGoogle Scholar
Penn, R. L., and Banfield, J. F., Geochim. Cosmochim. Ac. 63, 1549 (1999).CrossRefGoogle Scholar
Ranade, M. R., Navrotsky, A., Zhang, H. Z., Banfield, J. F., Elder, S. H., Zaban, A., Borse, P. H., Kulkarni, S. K., Doran, G. S., and Whitfield, H. J., P. Natl. Acad. Sci. U.S.A. 99, 6476 (2002).CrossRefGoogle Scholar
Sabyrov, K., Burrows, N. D., and Penn, R. L., Chem. Mater. 25, 1408 (2012).CrossRefGoogle Scholar
Gribb, A. A., and Banfield, J. F., Am. Mineral. 82, 717 (1997).CrossRefGoogle Scholar
Penn, R. L., and Banfield, J. F., Am. Mineral. 84, 871 (1999).CrossRefGoogle Scholar
Penn, R. L., and Banfield, J. F., Am. Mineral. 83, 1077 (1998).CrossRefGoogle Scholar
Sabyrov, K., Adamson, V., and Penn, R. L., CrystEngComm 16, 1488 (2014).CrossRefGoogle Scholar
Yuwono, V. M., Burrows, N. D., Soltis, J. A., and Penn, R. L., J. Am. Chem. Soc. 132, 2163 (2010).CrossRefGoogle Scholar
Yuwono, V. M., Burrows, N. D., Soltis, J. A., Do, T. A., and Penn, R. L., Faraday Discuss. 159, 235 (2012).CrossRefGoogle Scholar
Isley, S. L., and Penn, R. L., J. Phys. Chem. C 112, 4469 (2008).CrossRefGoogle Scholar
Penn, R. L., and Soltis, J. A., CrystEngComm 16, 1409 (2014).CrossRefGoogle Scholar
Burleson, D. J., and Penn, R. L., Langmuir 22, 402 (2005).CrossRefGoogle Scholar
Li, D., Soberanis, F., Fu, J., Hou, W., Wu, J., and Kisailus, D., Cryst. Growth Des. 13, 422 (2013).CrossRefGoogle Scholar
Zhang, H., and Banfield, J. F., J. Mater. Chem. 8, 2073 (1998).CrossRefGoogle Scholar
Atashfaraz, M., Shariaty-Niassar, M., Ohara, S., Minami, K., Umetsu, M., Naka, T., and Adschiri, T., Fluid Phase Equilibr. 257, 233 (2007).CrossRefGoogle Scholar
Willis, M. A., M. S. Thesis (1992).Google Scholar
Frandsen, C., Legg, B. A., Comolli, L. R., Zhang, H., Gilbert, B., Johnson, E., and Banfield, J. F., CrystEngComm 16, 1451 (2014).CrossRefGoogle Scholar