Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T06:55:49.329Z Has data issue: false hasContentIssue false

Synthesis of III-V Nanocrystals by Co-reduction Reactions

Published online by Cambridge University Press:  01 February 2011

Zhaoping Liu
Affiliation:
[email protected], State University of New York at Binghamton, Department of Chemistry, B inghamton, NY, 13902, United States
Jiye Fang
Affiliation:
[email protected], State University of New York at Binghamton, Department of Chemistry, Binghamton, NY, 13902, United States
Get access

Abstract

This paper describes a co-reduction colloidal method for the synthesis of In-containing III-V nanocrystals (NCs) by using pnictogen halides (such as PCl3, AsCl3, and SbCl3) as the pnictogen-sources and superhydride (LiBH(C2H5)3) as the reducing agent. The syntheses were generally carried out in octadecene in the presence of fatty acids at ∼250 °C. The as-synthesized InP NCs were monodisperse in particle size and size distribution, whereas the InAs and InSb NCs showed relatively lower quality. The growth process of NCs was studied using InP as a model system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Heath, J. R., Shiang, J. J., Chem. Soc. Rev. 27, 6571 (1998).Google Scholar
2 Nozik, A.J., Mićić, O. I. MRS Bull. 23, 2430 (1998).Google Scholar
3 Green, M., O’Brien, P., Chem. Commun. 22, 22352241(1999).Google Scholar
4 Green, M., Curr. Opin. Solid State Mater. Sci. 6, 355363 (2002).Google Scholar
5 Masala, O., Seshadri, R., Annu. Rev. Mater. Res. 34, 4181 (2004).Google Scholar
6(a) Wells, R. L., Pitt, C. G., McPhail, A. T., Purdy, A. P., Shafieezad, S., Hallock, R. B., Chem.Mater. 1, 46 (1989). (b) R. L. Wells, R. B. Hallock, A. T. McPhail, C. G. Pitt, J. D. Jphansen, Chem. Mater. 3, 381-382 (1991). (c) R. L. Wells, S. R. Aubuchon, S. S. Kher, M. S. Lube, P. S. White, Chem. Mater. 7, 793-800 (1995).Google Scholar
7(a) Mićić, O. I., Curtis, C. J., Jones, K. M., Sprague, J. R., Nozik, A. J., J. Phys. Chem. 98,49664969 (1994). (b) O. I. Mićić, J. R. Sprague, C. J. Curtis, K. M. Jones, J. L. Machol, A. J. Nozik, H. Giessen, B. Fluegel, G. Mohs, N. Peyghambarian, J. Phys. Chem. 99, 7754-7759 (1995). (c) O. I. Mićić, S. P. Ahrenkiel, A. J. Nozik, Appl. Phys. Lett. 78, 4022-4024 (2001).Google Scholar
8(a) Olshavsky, M. A., Goldstein, A. N., Alivisatos, A. P., J. Am. Chem. Soc. 112, 94389439(1990). (b) A. A. Guzelian, J. E. B. Katari, A. V. Kadavanich, U. Banin, K. Hamad, E. Juban, A. P. Alivisatos, R. H. Wolters, C. C. Arnold, J. R. Heath, J. Phys. Chem. 100, 7212-7219 (1996). (c) A. A. Guzelian, U. Banin, A. V. Kadavanich, X. Peng, A. P. Alivisatos, Appl.Phys. Lett. 69, 1432-1434 (1996).Google Scholar
9 Malik, M. A., O’Brien, P., Norager, S., Smith, J., J. Mater. Chem. 13, 2592595 (2003).Google Scholar
10 Battaglia, D., Peng, X., Nano Lett. 2, 10271030 (2002).Google Scholar
11 Xu, S., Kumar, S., Nann, T., J. Am. Chem. Soc. 128, 10541055 (2006).Google Scholar
12 Green, M., PO’Brien, ., Chem. Commun. 22, 24592460 (1998).Google Scholar
13(a) Wells, R. L., Self, M. F., Mcphail, A. T., Aubuchon, S. R., Woudenberg, R. C., Jasinski, J. P., Organometallics 12, 28322834 (1993). (b) J. F. Janik, R. L. Wells, V. G. Toung, A. L. Rheingold, I. A. Guzei, J. Am. Chem. Soc. 120, 532-537 (1998).Google Scholar
14 Kher, S. S., Wells, R. L., Chem. Mater. 6, 20562062 (1994).Google Scholar
15 Jun, K.-W., Khanna, P. K., Hong, K.-B., Baeg, J.-O., Suh, Y.-D., Mater. Chem. Phys. 96, 494497 (2006).Google Scholar
16(a) Xie, Y., Yan, P., Lu, J., Wang, W., Qian, Y., Chem. Mater. 11, 26192622 (1999) (b) P. Yan, Y. Xie, W. Wang, F. Liu, Y. Qian, J. Mater. Chem. 9, 1831-1833 (1999). (c) S. Gao, J. Lu, N. Chen, Y. Zhao, Y. Xie, Chem. Commun. 24, 3064-3065 (2002). (d) S. Wei, J. Lu, L. Zeng, W. Yu, Y. Qian, Chem. Lett. 10, 1034-1035 2002. (e) S. Wei, J. Lu, W. Yu, Y. Qian, J. Appl. Phys. 95, 3683-3688 (2004).Google Scholar
17 Sun, Z., Zhang, J., Zhang, M., Fang, J., Mat. Res. Soc. Symp. Proc. 942E, 0942-W08-24 (2006).Google Scholar
18(a) Li, Y., Duan, X., Qian, Y., Yang, L., Ji, M., Li, C., J. Am. Chem. Soc. 119, 78697870 (1997).(b) Y. Li, Z. Wang, X. Duan, G. Zhang, C. Wang, Adv. Mater. 13, 145-148 (2001).Google Scholar
19 Liu, Z., Kumbhar, A., Xu, D., J, Zhang, Sun, Z., Fang, J., Angew. Chem. Int. Ed. (Submitted).Google Scholar
20 Fu, H., Zunger, A., Phys. ReV. B 1997, 56, 14961508.Google Scholar
21(a) Qu, L., Peng, X., J. Am. Chem. Soc. 2002, 124, 20492055. (b) S. Adam, D. V. Talapin, H. Borchert, A. Lobo, C. McGinley, A. R. B. de Castro, M. Haase, H. Weller, T. Möller, J.Chem. Phys. 2005, 123, 084706Google Scholar