Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T23:03:44.825Z Has data issue: false hasContentIssue false

Synthesis of High Quality Few Layer Graphene Sheets in Large Quantities by Radio Frequency Chemical Vapor Deposition

Published online by Cambridge University Press:  31 January 2011

Enkeleda Dervishi
Affiliation:
[email protected], University of Arkansas at Little Rock, UALR Nanotechnology Center, 2801 S. university ave, Little Rock, Arkansas, 72204, United States, 501-569-3203
Zhongrui Li
Affiliation:
[email protected], University of Arkansas at Little Rock, nanotechnology Center, 2801 S. University Ave, Little Rock, Arkansas, 72204, United States
Fumiya Watanabe
Affiliation:
[email protected], University of Arkansas at Little Rock, Nanotechnology Center, Little Rock, Arkansas, United States
Jimmy Shyaka
Affiliation:
[email protected], University of Arkansas at Little Rock, nanotechnology Center, 2801 S. University Ave, Little Rock, Arkansas, 72204, United States
Abhijit Biswas
Affiliation:
[email protected], University of Oklahoma, Department of Physics, Norman, Oklahoma, United States
Aurelie Courte
Affiliation:
[email protected], Ecole d'Ingenieurs du CESI-EIA, La Couronne, France
Jean Luc Umwungeri
Affiliation:
[email protected], University of Arkansas at Little Rock, nanotechnology Center, 2801 S. University Ave, Little Rock, Arkansas, 72204, United States
Alexandru R. Biris
Affiliation:
[email protected], National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
Alexandru S. Biris
Affiliation:
[email protected], United States
Get access

Abstract

This work reports a low-cost method for large scale production of high quality graphene via radio-frequency chemical vapor deposition. High quantities of graphene were successfully synthesized on the Fe-Co/MgO (2.5:2.5:95 wt.%) catalytic system utilizing acetylene as a hydrocarbon source at 1000 °C. The as-produced graphene sheets were purified in a single step by washing with a diluted hydrochloric acid solution under sonication. Next, they were thoroughly characterized by microscopy, spectroscopy, and X-Ray diffraction. Advanced transmission electron microscopy and atomic force microscopy analyses have indicated the formation of 3-5 layered graphene nanosheets. Thorough analyses by Raman spectroscopy were also performed demonstrating the presence of high quality and few-layer graphene samples. This low cost and highly reproducible method may be applied in a straightforward way to produce large quantities of graphene for various advanced applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhass, K. M., Zimney, Z. J., Stach, E. A., Piner, R. D., Nguyen, S. T., and Rouff, R. S., Nature 442, 282 (2006).Google Scholar
2. Geim, A. K., and MacDonald, A. H., Phys. Today 60, 35 (2007).Google Scholar
3. Novoselov, K. S., Jiang, Z., Zhang, Y., Morozov, S. V., Stormer, H. L., Zeitler, U., Maan, J. C., Boebinger, G. S., Kim, P., and Geim, A. K., Science 315, 1379 (2007).10.1126/science.1137201Google Scholar
4. Wang, X., Linjie, Z., and Mullen, K., Nano Lett. 8, 323 (2008).10.1021/nl072838rGoogle Scholar
5. Berger, C., Song, Z. M., Li, X. B., Wu, X. S., Brown, N., Nand, C., Mayon, D., Li, T. B., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., and Heer, W. A. de, Science 312, 1191 (2006).10.1126/science.1125925Google Scholar
6. Geim, A. K., and Novoselov, K. S., Nat. Mat. 6, 183 (2007).Google Scholar
7. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., and Firsov, A. A., Nature 438, 197 (2005).10.1038/nature04233Google Scholar
8. Hummers, W. S., and Offeman, J. R. E., J. Am Chem. Soc. 80, 1339 (1958).10.1021/ja01539a017Google Scholar
9. Hao, R., Qian, W., Zhang, L., and Hou, Y., Chem. Comm. 48, 6576 (2008).Google Scholar
10. Li, X., Wang, X., Zhang, L., Lee, S., and Dai, H., Science 319, 1229 (2008).Google Scholar
11. Wang, G., Yang, J., Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. J. Phys. Chem. 112, 8192 (2008).Google Scholar
12. Sutter, P. W., Flege, J. I., Sutter, E. A., Nat. Mat. 7, 406 (2008).10.1038/nmat2166Google Scholar
13. Stancovich, S., Dikin, D. A., Piner, R. D., Kohlhass, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., Rouff, R. S. Carbon 45, 1558 (2007).10.1016/j.carbon.2007.02.034Google Scholar
14. Dervishi, E., Li, Z., Biris, A. R., Lupu, D., Trigwell, S., Biris, A. S., Chem. Mater. 19, 179 (2007).Google Scholar
15. Biris, A. R., Biris, A. S., Lupu, D., Trigwell, S., Dervishi, E., Rahman, Z., Marginean, P., Chem. Phys. Lett. 429, 204 (2006).10.1016/j.cplett.2006.08.007Google Scholar
16. Dervishi, E., Li, Z., Xu, Y., Saini, V., Watanabe, F., Biris, A. S., Bonpain, A., Garbay, J. J., Meriet, A., Richard, M., Part. Science and Tech. 27, 222 (2008).10.1080/02726350902921848Google Scholar
17. Ci, L., Song, L., Jariwala, D., Elias, A. Laura, Gao, W., Terrones, M., Ajayan, P. M., Adv. Mater. 21, 1 (2009).Google Scholar
18. Vericat, C., Vela, M. E., and Salvarezza, R. C., Phys. Chem. Chem. Phys. 7(18), 32583268 (2005).10.1039/b505903hGoogle Scholar
19. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K., Phys. Rev. Lett., 97, 189401 (2007).Google Scholar
20. Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C., Wirtz, L., Nano Lett. 7, 238242 (2007).Google Scholar
21. Ferrari, A. C., Solid State Communications 143, 4757 (2007).10.1016/j.ssc.2007.03.052Google Scholar
22. Das, A., Chakraborty, B., and Sood, A. K., Bull. Mater. Sci. 31(3), 579584 (2008).10.1007/s12034-008-0090-5Google Scholar
23. Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C. and Wirtz, L., Solid State Comm. 143, 4446 (2007).Google Scholar
24. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., and Kong, J., Nano Letter 9(1), 3035 (2009).Google Scholar
25. Lee, D. S., Riedl, C., Krauss, B., Klitzing, K. von, Starke, U., and Smet, J. H., Nano Lett. 8(12), 43204325 (2008).Google Scholar
26. Dimovski, S., Nikitin, A., Ye, H., and Gogotsi, Y., J. Mat. Chem. 14, 238243 (2004).Google Scholar
27. Biscoe, J., and Warren, B., J. Appl. Phys. 12, 346 (1942).Google Scholar