Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T02:40:30.008Z Has data issue: false hasContentIssue false

Synthesis of Few-Layer and Multi-Layer Graphene and Fabrication of Top-Gated Field Effect Transistors without Using Transferring Processes

Published online by Cambridge University Press:  31 January 2011

Daiyu Kondo
Affiliation:
[email protected], Fujitsu Laboratories Ltd., Nanoelectronics Research Center, Atsugi, Japan
Katsunori Yagi
Affiliation:
[email protected], Fujitsu Laboratories Ltd., Nanoelectronics Research Center, Atsugi, Japan
Naoki Harada
Affiliation:
[email protected], Fujitsu Laboratories Ltd., Nanoelectronics Research Center, Atsugi, Japan
Motonobu Sato
Affiliation:
[email protected], Fujitsu Laboratories Ltd., Nanoelectronics Research Center, Atsugi, Japan
Mizuhisa Nihei
Affiliation:
[email protected], Fujitsu Laboratories Ltd., Nanoelectronics Research Center, Atsugi, Japan
Shintaro Sato
Affiliation:
[email protected], Fujitsu Laboratories Ltd., Nanoelectronics Research Center, Atsugi, Japan
Naoki Yokoyama
Affiliation:
[email protected], Fujitsu Laboratories Ltd., Nanoelectronics Research Center, Atsugi, Japan
Get access

Abstract

We have fabricated top-gated field effect transistors (FETs) using graphene synthesized by chemical vapor deposition directly on a SiO2/Si substrate without using any transferring processes. Graphene was synthesized on an Fe catalyst film on the substrate at 650°C. The catalyst film was then etched after both ends of the graphene were fixed by source and drain electrodes, leaving the graphene channel connecting the two electrodes. Top-gated FETs were then made by covering graphene channels with HfO2 and depositing top electrodes. The drain current was successfully modulated by the gate voltage and exhibited the bipolar behavior that is characteristic of graphene. Also, it has been shown that graphene channels can sustain an electric current with a density of 107–108 /cm2. Our newly developed fabrication process paves a way to fabricate graphene transistors all over large substrates including Si and glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).Google Scholar
2 Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., and Stormer, H. L., Solid State Commun. 146, 351 (2008).Google Scholar
3 Lee, C., Wei, X., Kysar, J. W., and Hone, J., Science 321, 385 (2008).Google Scholar
4 Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C. N., Nano Lett. 8, 902 (2008).Google Scholar
5 Lemme, M. C., Echtermeyer, T. J., Baus, M., and Kurz, H., IEEE Electron Device Lett. 28, 282 (2007).Google Scholar
6 Lin, Y.-M., Jenkins, K. A., Valdes-Garcia, A., Small, J. P., Farmer, D. B., and Avouris, Ph., Nano Lett. 9, 422 (2009).Google Scholar
7 Kim, S., Nah, J., Jo, I., Shahrjerdi, D., Colombo, L., Yao, Z., Tutuc, E., Banerjee, S. K., Appl. Phys. Lett. 94, 062107 (2009).Google Scholar
8 Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J.-H., Kim, P., Choi, J.-Y., and Hong, B. H., Nature 457, 706 (2009).Google Scholar
9 Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., and Kong, J., Nano Lett. 9, 30 (2009).Google Scholar
10 Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., and Yu, G., Nano Lett. 9, 1752 (2009).Google Scholar
11 Levendorf, M. P., Ruiz-Vargas, C. S., Garg, S., and Park, J., Nano Lett. 9, 4479 (2009).Google Scholar
12 Tuinstra, F. and Koenig, J. L., J. Chem. Phys. 53, 1126 (1970).Google Scholar
13 Ferrari, A. C. and Robertson, J., Phys. Rev. B 61, 14095 (2000).Google Scholar