Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T17:01:11.194Z Has data issue: false hasContentIssue false

Synthesis of Different Molybdenum Disulfide Nanostructures and their Applicability in Lithium Ion Batteries with Ionic Liquid Electrolytes

Published online by Cambridge University Press:  07 February 2013

Daniel Albrecht
Affiliation:
Institute of Energy Research and Physical Technologies, Clausthal University of Technology, Am Stollen 19 b, 38640 Goslar, Germany
Hendrik Wulfmeier
Affiliation:
Institute of Energy Research and Physical Technologies, Clausthal University of Technology, Am Stollen 19 b, 38640 Goslar, Germany
Svetlozar Ivanov
Affiliation:
Department of Electrochemistry and Electroplating, Ilmenau University of Technology, Gustav-Kirchhoff-Straße 6, 98693 Ilmenau, Germany
Andreas Bund
Affiliation:
Department of Electrochemistry and Electroplating, Ilmenau University of Technology, Gustav-Kirchhoff-Straße 6, 98693 Ilmenau, Germany
Holger Fritze
Affiliation:
Institute of Energy Research and Physical Technologies, Clausthal University of Technology, Am Stollen 19 b, 38640 Goslar, Germany
Get access

Abstract

Molybdenum disulfide (MoS2) nanostructures with three different morphologies are synthesized and tested with respect to their applicability in lithium ion batteries. Thereby, electrolytes based on ionic liquids are used. The electrochemical performance of nanostructures and thin films is compared to evaluate the influence of the morphology. Characterization methods include X-Ray diffraction (XRD), cyclic voltammetry (CV), galvanostatic cycling and thin film calorimetry. The thin film and the nanostructured samples show a reversible capacity of 525 mAh/g and a maximum capacity 225 mAh/g, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Feng, C., Ma, J., Li, H., Zeng, R., Guo, Z., Liu, H., Materials Research Bulletin 44, 18111815 (2009).CrossRefGoogle Scholar
Li, A., Liu, H., Zhu, Z., Huang, M., Yang, Y., J. Mater. Sci. Technol. 22, 4044 (2006).Google Scholar
Dominko, R., Arcon, D., Mrzel, A., Zorko, A., Cevc, P., Venturini, P., Gaberscek, M., Remskar, M., Mihailovic, D., J. Mater. Sci. Technol. 22, 4044 (2006).Google Scholar
Lewandowski, A., Swiderska-Mocek, A., J. Power Sources 194, 601–209 (2009).CrossRefGoogle Scholar
Aklalouch, M., Amarilla, J.M., Rojas, R.M., Saadoune, I., Rojo, J.M., Electrochemistry Communications 12, 548552 (2010).CrossRefGoogle Scholar
Borgel, V., Markevich, E., Aurbach, D., Semrau, G., Schmidt, M. J. Power Sources 189, 331336 (2009).CrossRefGoogle Scholar
Nagaraju, G., Tharamani, C.N., Chandrappa, G.T., Livage, J., Nanoscale Res. Let. 3, 461468 (2007).CrossRefGoogle Scholar
Wulfmeier, H., Albrecht, D., Ivanov, S., Bund, A., Fritze, H., Submitted to this proceedings volume Google Scholar
Peng, Y., Meng, Z., Zhong, C., Lu, J., Yu, W., Yang, Z., Qian, Y., J. Solid State Chem. 159, 170173 (2001)CrossRefGoogle Scholar