Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T11:04:06.860Z Has data issue: false hasContentIssue false

Synthesis, Characterization, and Modeling of Nanotube Materials with Variable Stiffness Tethers

Published online by Cambridge University Press:  01 February 2011

S. J. V. Frankland
Affiliation:
National Institute of Aerospace, Hampton, VA
M. N. Herzog
Affiliation:
National Research Council, Hampton, VA
G. M. Odegard
Affiliation:
National Institute of Aerospace, Hampton, VA
T. S. Gates
Affiliation:
NASA Langley Research Center, Hampton, VA
C. C. Fay
Affiliation:
NASA Langley Research Center, Hampton, VA
Get access

Abstract

Synthesis, mechanical testing, and modeling have been performed for a carbon nanotube material in which the nanotubes are functionalized with variable stiffness tethers (VST) capable of cross-linking the nanotubes. Tests using nanoindentation indicated a six-fold enhancement in the storage modulus when comparing the base material (the cross-linking agent with no nanotubes) to the composite (functionalized nanotube material) that contained 5.3 wt% of nanotubes. To understand how crosslinking the nanotubes may further alter the stiffness, a model of the system was constructed using nanotubes crosslinked with the VST. The model predicted that for a composite with 5 wt% nanotubes at random orientations, crosslinked with the VST, the bulk Young's modulus was reduced to 30% that of the non-crosslinked equivalent.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Frankland, S. J. V., Herzog, M. N., Odegard, G. M., Gates, T. S., and Fay, C. C., ‘Modeling and Characterization of Elastic Constants of Functionalized Nanotube Materials,’ Mat. Res. Soc. Symp. Proc. 791 (2003).Google Scholar
2. Sreekumar, T. V., Liu, T., Min, B. G., Guo, H., Kumar, S., Hauge, R. H., and Smalley, R. E., Adv. Materials, 16, 58 (2004).Google Scholar
3. Weisenberger, M. C., Grulke, E. A., Jacques, D., Rantrell, T., and Andrews, R., J. Nanoscience and Nanotechnology, 3, 535 (2003).Google Scholar
4. Bahr, J. L. and Tour, J. M., Chem. Mater. 13, 3823 (2001).Google Scholar
5. Chiang, I. W., Brinson, B. E., Huang, A. Y., Willis, P. A., Bronikowski, M. J., Margrave, J. L., Smalley, R. E., and Hauge, R. H., J. Phys. Chem. B 105, 8297 (2001).Google Scholar
6. Bahr, J. L., Yang, J., Kosynkin, D. V., Bronikowski, M. J., Smalley, R. E., and Tour, J. M., J. Am. Chem. Soc. 123, 6536 (2001).Google Scholar
7. Odegard, G.M., Bandorawalla, T., Herring, H.M., and Gates, T.S., Proc. of the 2003 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, June 2–4, 2003, Charlotte, NC.Google Scholar
8. Frankland, S. J. V., Odegard, G. M., Herzog, M. N., Gates, T.S., and Fay, C.C., Proc.of the ASC/ASTM-D30 Joint 19th Annual Technical Conference, Atlanta, GA, Oct 17–20, 2004.Google Scholar
9. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A., J. Am. Chem. Soc. 117, 5179 (1995).Google Scholar
10. Harrison, R. J., et al. “NWChem, A Computational Chemistry Package for Parallel Computers, Version 4.1,” Pacific Northwest National Laboratory, Richland, Washington.Google Scholar
11. Smith, W., and Forester, T. R.. DL-POLY, Warrington, England: The Council for the Central Laboratory of the Research Councils, 1996.Google Scholar
12. Mori, T. and Tanaka, K., Acta Metallurgica, 21, 571 (1973).Google Scholar