Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T15:55:09.107Z Has data issue: false hasContentIssue false

Synthesis And Water Sorption Properties Of Aluminophosphate (AlPO4) And Silicoaluminophosphate (Sapo) Molecular Sieves

Published online by Cambridge University Press:  15 February 2011

P. B. Malla
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
S. Komarneni
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

Aluminophosphate (AlPO4–5, AlPO4–11, AlPO4–17, AlPO4–20) and silicoaluminophosphate (SAPO-5, SAPO- 11, SAPO-17, SAPO-20) molecular sieves of varying pore sizes (3–8 Å) were synthesized and their water adsorption and desorption properties were studied. Water sorption isotherms of AlPO4 molecular sieves were characterized by unusual isotherm shapes, that is, little or no initial adsorption followed by extreme adsorption leading to volume filling by hydrogen bonding and cooperative interaction in micropores, apparently due to the nonpolar nature of pore surfaces coupled with weak (reversible upon evacuation) chemisorption of water, and hysteresis loops extending to very low pressures. Although micropore filling in AlPO2's and isostructural SAPO's was completed almost at the same relative pressure (p/po), SAPO's exhibited less extreme adsorption isotherms as a result of their slightly more polar nature of pore surfaces compared to AlPO4's. Neither AlPO4apos;s nor SAPO's exhibited Brunauer Type I isotherms with water, contrary to a general expectation of the hydrophilic microporous solids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wilson, S.T., Lok, B.M., Messina, C. A., Cannan, T. R., and Flanigen, E. M., in Intrazeolite Chemistry, edited by Stucky, G.D. and Dwyer, F.G. (Am. Chem. Soc., Washington DC 1983) p. 79.CrossRefGoogle Scholar
2. Flanigen, E.M., Patton, R.L., and Wilson, S.T., in Innovation in Zeolite Materials Sci., edited by Grobet, P.J., Mortier, W.J., Vansant, E.F., and Schulz-Ekloff, G. (Elsevier, New York 1988) p. 13.Google Scholar
3. Lok, B.M., Messina, C.A., Patton, R.L., Gajek, R.T., Cannan, T.R., and Flanigen, E.M., J. Am. Chem. Soc. 106 6092 (1984).CrossRefGoogle Scholar
4. Flanigen, E.M., Lok, B.M., Patton, R.L., and Wilson, S.T., in New Developments in Zeolite Sci. and Tech., edited by Murakami, Y., Iijima, A., and Ward, J.W. (Elsevier, New York, 1986), p. 103.Google Scholar
5. Wilson, S.T. and Flanigen, E.M., in Zeolite Synthesis, edited by Ocelli, M.L. and Robson, H.E. (Am. Chem. Soc., Washington DC 1989) p. 329.CrossRefGoogle Scholar
6. Wilson, S.T., Lok, B.M., and Flanigen, E.M., U.S. Patent No. 4 310 440 (12 January 1982).Google Scholar
7. Lok, B.M., Messina, C. A., Patton, R.L., Gajek, R.T., Cannan, T. R., and Flanigen, E. M., U.S. Patent No. 4 440 871 ( 3 April 1984).Google Scholar
8. Davis, M.E., Saldarriaga, C., and Montes, C., Zeolites 8, 362 (1988).CrossRefGoogle Scholar
9. Bennett, J. M., Dytrych, W. J., Pluth, J.J., Richardson, J. W. Jr.,, and Smith, J. V., Zeolites 6, 349 (1986).CrossRefGoogle Scholar
10. Rudolf, P. R., Saldarriaga-Molina, C., and Clearfield, a., J. Phys. Chem. 90, 6122 (1986).CrossRefGoogle Scholar
11. Bennett, J. M. and Marcus, B. K., in Innovation in Zeolite Materials Sci., edited by Grobet, P.J.,Mortier, W.J., Vansant, E.F., and Schulz-Ekloff, G.(Elsevier, New York 1988) p. 269.Google Scholar
12. Blackwell, C. S. and Patton, R. L., J. Phys. Chem. 88, 6135 (1984).CrossRefGoogle Scholar
13. Hasha, D., Saldarriaga, L.S., Saldarriaga, C., Hathaway, P.E., Cox, D.F., and Davis, M.E., J. Am. Chem. Soc. 110, 2127 (1988).CrossRefGoogle Scholar
14. Goepper, M., Guth, F., Delmotte, L., Guth, J. L., and Kessler, H., in Zeolites: Facts, Figures, Future, edited by Jacobs, P.A. and Santen, R.A. van (Elsevier Science Publishers, New York, 1989), p. 857.Google Scholar
15. Marten, J. A., Grobet, P.J., and Jacobs, P.A., J. Catal. 126., 299 (1990).CrossRefGoogle Scholar
16. Jahn, E., Müller, D., and Becker, K., Zeolites 10, 151 (1990).CrossRefGoogle Scholar
17. Tapp, N.J., Milestone, N.B., Bowden, M.E., and Meinhold, R.H., Zeolites 10, 105 (1990).CrossRefGoogle Scholar
18. Wu, Y., Chmelka, B.F., Pines, A., Davis, M.E., Grobet, P.J., and Jacobs, P.A., Nature 346, 550 (1990).CrossRefGoogle Scholar
19. Hathaway, P.E. and Davis, M.E., Catal. Lett. 5, 333 (1990).CrossRefGoogle Scholar
20. Thamm, H., Stach, H., Jahn, E., and Fahlke, B., Adsorp. Sci. Tech. 3, 217 (1986).CrossRefGoogle Scholar
21. Theocharis, C. R. and Gelsthorpe, M. R., in Characterization of Porous Solids, edited by Unger, K.K., Rouquerol, J., Sing, K.S.W., and Kral, H. (Elsevier Science Publishers, Amsterdam, 1988), p. 541.Google Scholar
22. Yamanaka, S. and Komarneni, S., U.S. Patent Application (1988).Google Scholar
23. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Pure and Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
24. Carrott, M.R., Carrott, P., Carvalho, M.B., and Sing, K.S.W., J. Chem. Soc.Faraday Trans. 87, 185 (1991).CrossRefGoogle Scholar
25. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porasitv. 2nd ed.(Academic Press, London, 1982), pp.303.Google Scholar
26. Fubini, B., Bolis, V., Bailes, M. and Stone, F. S., Solid State Ionics 32/33. 258 (1989).CrossRefGoogle Scholar
27. Lohse, U., Noack, M., and Jahn, E., Adsorp. Sci. Tech. 3, 19 (1986).CrossRefGoogle Scholar