Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-20T05:44:15.607Z Has data issue: false hasContentIssue false

Synthesis and Thermoelectric Properties of Lead Chalcogenide Nanocomposites

Published online by Cambridge University Press:  01 February 2011

Joshua Martin
Affiliation:
[email protected], University of South Florida, Physics, 4202 E. Folwer Ave., PHY 114, Tampa, FL, 33620, United States, 813-974-8236
Stevce Stefanoski
Affiliation:
[email protected], University of South Florida, Department of Physics, 4202 E. Fowler Ave., PHY 207, Tampa, FL, 33620, United States
Li Wang
Affiliation:
[email protected], Shanghai Institute of Ceramics, State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Dingxi Road 1295, Chinese Academy of Sciences, Shanghai, 200050, China, People's Republic of
Lidong Chen
Affiliation:
[email protected], Shanghai Institute of Ceramics, State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Dingxi Road 1295, Chinese Academy of Sciences, Shanghai, 200050, China, People's Republic of
George S. Nolas
Affiliation:
[email protected], University of South Florida, Department of Physics, 4202 E. Fowler Ave., PHY 207, Tampa, FL, 33620, United States
Get access

Abstract

Doped lead telluride dimensional nanocomposites were prepared by densifying nanocrystals synthesized employing an alkaline aqueous solution-phase reaction. The nanocrystal synthesis procedure resulted in high product yields of over 2 g per batch. These nanocrystals were then subjected to Spark Plasma Sintering (SPS) for densification. Transport properties were evaluated through temperature dependent resistivity, Hall, Seebeck coefficient, and thermal conductivity measurements. The results for these lead telluride nanocomposites were compared to bulk polycrystalline lead tellurides with similar carrier concentrations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Thermoelectrics: Basics Principles and New Materials Developments by Nolas, G. S., Sharp, J. W. and Goldsmid, H. J., Springer-Verlag, Heidelberg, 2001.Google Scholar
2. Hicks, L. D., Dresselhaus, M. S., Phys. Rev. B 47, 16631 (1993).Google Scholar
3. Venkatasubramanian, R., Siivola, E., Colpitts, T., O'Quinn, B., Nature 413, 597 (2001).Google Scholar
4. Harman, T. C., Taylor, P. J., Walsh, M. P., and LaForge, B. E., Science 297, 2229 (2002).Google Scholar
5. Kong, T., Cronin, S. B., Dresselhaus, M. S., Applied Physics Letters 77, 1490 (2000).Google Scholar
6. Heremans, J. P., Thrush, C. M. and Morelli, D. T., J. Appl. Phys. 98, 063703 (2005).Google Scholar
7. Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., Kanatzidis, M. G., Science 303, 818 (2004).Google Scholar
8. Wang, H., Li, J., Nan, C., Zhou, M., Liu, W., Zhang, B. and Kita, T., Appl. Phys. Lett. 88, 092104 (2006).Google Scholar
9. Kishimoto, K. and Koyanagi, T., J. Appl. Phys. 92, 2544 (2002).Google Scholar
10. Znai, P.C., Zhao, W.Y., Li, Y., Tang, X.F., Zhang, Z.J. and Nino, M., Appl. Phys. Lett. 89, 052111 (2006).Google Scholar
11. Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., Ren, Z. F., Fleurial, J. P. and Gogna, P., Proc. Mater. Res. Soc. 886 3 (2006).Google Scholar
12. Heremans, J. P., Thrush, C. M., and Morelli, D. T., Physical Review B 70, 115334 (2004).Google Scholar
13. Zhang, W., Zhang, L., Cheng, Y., Hui, Z., Zhang, X., Xie, Y., and Qian, Y., Materials Research Bulletin 35, 2009 (2000).Google Scholar
14. Martin, J., Nolas, G. S., Zhang, W., Chen, L., Appl. Phys. Lett. 90, 222112 (2007).Google Scholar
15. Scanlon, W., in Solid State Physics 9, Academic Press, NY (1959).Google Scholar
16. Dughaish, Z. H., Physica B, 322, 205 (2002).Google Scholar
17. Putley, E. H., Proc. Phys. Soc. B 65, 388 (1952).Google Scholar
18. Putley, E. H., Proc. Phys. Soc. B 65, 736 (1952).Google Scholar
19. Ravich, Yu. I., Efimova, B. A., and Smirnov, I. A., Semiconducting Lead Chalcogenides Plenum, New York, p.91 (1970).Google Scholar
21. Crocker, A. J. and Rogers, L. M., Brit. J. Appl. Phys. 18, 563 (1967).Google Scholar