Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T10:59:43.388Z Has data issue: false hasContentIssue false

The Synthesis and Structures of Elpasolite Halide Scintillators

Published online by Cambridge University Press:  31 January 2011

Pin Yang
Affiliation:
[email protected], Sandia National Laboratories, Ceramics and Glass Processing, Albuquerque, New Mexico, United States
F. Patrick Doty
Affiliation:
[email protected], Radiation and Nuclear Detection Materials and Analysis, Sandia National Laboratories, Livermore, California, United States
Mark A. Rodriguez
Affiliation:
[email protected], Sandia National Laboratories, Ceramics and Glass Processing, Albuquerque, New Mexico, United States
Margaret R. Sanchez
Affiliation:
[email protected], Sandia National Laboratories, Ceramics and Glass Processing, Albuquerque, New Mexico, United States
Xiaowong Zhou
Affiliation:
[email protected], Radiation and Nuclear Detection Materials and Analysis, Sandia National Laboratories, Livermore, California, United States
Kanai S. Shah
Affiliation:
[email protected], Radiation Monitoring Devices, Inc., Watertown, Massachusetts, United States
Get access

Abstract

Low-cost, high-performance gamma-ray spectrometers are urgently needed for nonproliferation and homeland security applications. Available scintillation materials fall short of the requirements for energy resolution and sensitivity at room temperature. The emerging lanthanide halide based materials, while having the desired luminosity and proportionality, have proven difficult to produce in the large sizes and low cost required due to highly anisotropic properties caused by the non-cubic crystal structure. New cubic materials, such as the recently discovered elpasolite family (A2BLnX6; Ln-lanthanide and X-halogen), hold promise for scintillator materials due to their high light output, proportionality, and toughness. The isotropic nature of the cubic elpasolites leads to minimal thermomechanical stresses during single-crystal solidification, and eliminates the problematic light scattering at the grain boundaries. Therefore, it may be possible to produce these materials in large sizes as either single crystals or transparent ceramics with high production yield and reduced costs. In this study, we investigated the “cubic” elpasolite halide synthesis and studied the structural variations of four different compounds, including Cs2NaLaBr6, Cs2LiLaBr6, Cs2NaLaI6, and Cs2LiLaI6. Attempts to produce a large-area detector by a hot forging technique were explored.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Knoll, G. Radiation Detection and Measurement, 3rd ed., New York: Wiley, 1999.Google Scholar
2. Guillot-Noël, O., Hass, J. T. M. de, Dorenbos, P. Eijk, C.W.E. van, Krämer, K., and Gõdel, H. U., “Optical and scintillation properties of cerium-doped LaCl3, LuBr3, and LuCl3 ,” J. Lumin., 85 2135 (1999).Google Scholar
3. Loef, E.V.D. van, Dorenbos, P. Eijk, C. W. E. van, Krämer, K., and Gõdel, H. U., “High energy resolution scintillator: Ce+3 activated LaBr3,” Appl. Phys. Lett., 79 [10] 15731575 (2001).Google Scholar
4. Shah, K. S. Glodo, J. Higgins, W. H. Loef, E. V. D. van, Moses, W. W. Derenzo, S. E. and Weber, M. J.CeBr3 scintillators for gamma-ray spectroscopy,” IEEE Trans. Nucl. Sci., 52 [6] 31573159 (2005).Google Scholar
5. Birowosuto, M. D. Dorenbos, P. and Eijk, C. W. E. van, Krämer, K.W., and Gõdel, H. U., “High-lightoutput scintillator for photodiode readout: LuI3: Ce3+ ,” J. Appl. Phys., 99 123520 (2006).Google Scholar
6. Glodo, J. Higgins, W. M. Loef, E. V. D. van, and Shah, K. S. “GdI3:Ce – A new gamma and neutron scintillator,” IEEE Nucl. Sci. Symposium Conference Record, 15741577 (2006).Google Scholar
7. Doty, F. P. McGregor, D. Harrison, M. findley, K. and Polichar, R, “Structure and property of lanthanide halides,” SPIE 6707, 670705 (2007).Google Scholar
8. Yang, P. Boyle, T. J. Bell, N. S. Sanchez, M. R. L. Ottley, A. M. and Chen, C. F. “Fabrication of largevolume, low-cost ceramic lanthanum halide scintillators for gamma ray detection,” Sandia Report, Sandia National Laboratories, SAND2008-6978 and SAND2007-0719.Google Scholar
9. Krämer, K., Schleid, T. Schulze, M. Urland, W. and Mayer, G.Three Bromides of Lanthanum: LaBr2, La2Br5 and LaBr3 ,” Z. Anorg. Allg. Chem., 575 6170 (1989).Google Scholar
10. Meyer, G.The synthesis and structures of complex rare-earth halides,” Prog. Solid St. Chem., 14, 141219 (1982).Google Scholar
11. Glodo, J. Loef, E. V. D. van, Higgins, W. M. and Shah, K. S.Scinillation Properties of Cs2NaLaI6:Ce,” 2006 IEEE Nuclear Science Symposium Conference Record N30-164 (2006).Google Scholar
12. Villafuerte, M. E.-Catrejon, Estrada, M. R. Gomez-Lara, J., Duque, J. and Pomes, R.Crystal structure of Cs2KTbCl6 and Cs2KEuCl6 by powder X-ray diffraction,” J. Solid State Chem., 132 15 (1997).Google Scholar
13. Boyle, T. J. Yang, P. L. Ottley, A. M. Rodriguez, M. A. T. M. Alam and Hoppe, S.Synthesis, characterization, and processing of hydrates and anhydrous species of simple and mixtures lanthanum halide materials for scintillator application,” in preparation (2008).Google Scholar
14. Kutscher, J. and Schneide, A.Chemistry of rare earths in melten alkaline halides. 8. Study on diagrams of state of lanthanide (III) iodides in mixture of alkaline iodides,” Z. Anorg. Allg. Chem., 386 [1] 3846 (1971).Google Scholar
15. Sangster, J. and Pelton, A. D.Phase diagrams and thermodynamic properties of the 70 binary alkalihalide systems having common ions,” J. Phys. Chem., 16 [3] 509561 (1987).Google Scholar
16. Reber, C. Gõdel, H., Meyer, G. Schleid, T. Dual, C. A.Optical spectroscopic and structuralproperties of V+3-doped fluoride, chloride, and bromide elpasolite lattices,” Inorganic Chem., 28 [16] 32493581 (1989).Google Scholar
17. Liu, L. Lu, W. and Chen, N.On the criteria of formation and lattice distortion of perovskite-type complex halides,” J. Phys. Chem., Solids 65 855860 (2004).Google Scholar
18. Shannon, R. D.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalogenides,” Acta Cryst., A32 751766 (1976)Google Scholar