Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T05:31:19.844Z Has data issue: false hasContentIssue false

Synthesis and Properties of Carbon Nanotube Yarns and Textiles

Published online by Cambridge University Press:  01 February 2011

Mark Schauer
Affiliation:
[email protected], Nanocomp Technologies, Research, 162 Pembroke Rd, Concord, NH, 03301, United States
David Lashmore
Affiliation:
[email protected], Nanocomp Technologies, 162 Pembroke Rd, Concord, NH, 03301, United States
Brian White
Affiliation:
[email protected], Nanocomp Technologies, 162 Pembroke Rd, Concord, NH, 03301, United States
Get access

Abstract

The strength of macroscopic materials made of carbon nanotubes depends on the quality of the nanotubes produced, as well as various methods of post-treatment. The average diameter and length of the nanotubes can be controlled through the various parameters of a specially designed injector system, in conjunction with the CVD furnace. Large non-woven textiles and yarns of pure nanotubes are created, and then post-processed in various ways to obtain the desired products. In this way textiles over 2 square meters, and yarns of over a half kilometer have been produced with strengths unprecedented in pure carbon nanotube materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ghose, S., Watson, K. A., Sun, K. J., Criss, J. M., Siochi, E. J. and Connell, J. W., Compos Sci Technol 66 (13), 19952002 (2006).Google Scholar
2. Chen, J., Liu, H. Y., Weimer, W. A., Halls, M. D., Waldeck, D. H. and Walker, G. C., J Am Chem Soc 124 (31), 90349035 (2002).Google Scholar
3. Jeong, S. H., Lee, O. J., Lee, K. H., Oh, S. H. and Park, C. G., Chem Mater 14 (4), 18591862 (2002).Google Scholar
4. Koshio, A., Yudasaka, M., Zhang, M. and Iijima, S., Nano Lett 1 (7), 361363 (2001).Google Scholar
5. Nan, X. L., Gu, Z. N. and Liu, Z. F., J Colloid Interf Sci 245 (2), 311318 (2002).Google Scholar
6. Huang, W. J., Lin, Y., Taylor, S., Gaillard, J., Rao, A. M. and Sun, Y. P., Nano Lett 2 (3), 231234 (2002).Google Scholar
7. Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M. and Kroto, H. W., J Phys Chem Solids 54 (12), 18411848 (1993).Google Scholar
8. Endo, M., Takeuchi, K., Kobori, K., Takahashi, K., Kroto, H. W. and Sarkar, A., Carbon 33 (7), 873–881 (1995).Google Scholar
9. Singh, C., Shaffer, M., Kinloch, I. and Windle, A., Physica B 323 (1-4), 339340 (2002).Google Scholar
10. Geng, J. F., Singh, C., Shephard, D. S., Shaffer, M. S. P., Johnson, B. F. G. and Windle, A. H., Chem Commun (22), 26662667 (2002).Google Scholar
11. Andrews, R., Jacques, D., Rao, A. M., Derbyshire, F., Qian, D., Fan, X., Dickey, E. C. and Chen, J., Chem Phys Lett 303 (5-6), 467474 (1999).Google Scholar
12. Endo, M., ChemTech 18, 568576 (1988).Google Scholar
13. Oberlin, A., Endo, M. and Koyama, T., J Cryst Growth 32 (3), 335349 (1976).Google Scholar
14. Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Souza, A. G., Pimenta, M. A. and Saito, R., Accounts Chem Res 35 (12), 10701078 (2002).Google Scholar
15. Dresselhaus, M. S. and Eklund, P. C., Adv Phys 49 (6), 705814 (2000).Google Scholar
16. Moisala, A., Nasibulin, A. G., Brown, D. P., Jiang, H., Khriachtchev, L. and Kauppinen, E. I., Chem Eng Sci 61 (13), 43934402 (2006).Google Scholar
17. Du, G. H., Li, W. Z., Liu, Y. Q., Ding, Y. and Wang, Z. L., J. Phys. Chem. C 111 (39), 1429314298 (2007).Google Scholar