Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T06:22:33.057Z Has data issue: false hasContentIssue false

Synthesis and Properties of Barium Titanate Thin Films Deposited on Copper Foil Substrates

Published online by Cambridge University Press:  26 February 2011

Jon Ihlefeld
Affiliation:
[email protected], North Carolina State University, 1001 Capability Drive, Rm. 324 Research Building I, Campus Box 7917, Raleigh, North Carolina, 27606, United States
William Borland
Affiliation:
[email protected], DuPont Electronic Technologies
Jon-Paul Maria
Affiliation:
[email protected], North Carolina State University, Materials Science and Engineering
Get access

Abstract

Barium titanate thin films have been deposited on copper foils in the absence of interfacial layers via a chemical solution process. The dielectric – base metal stacks have been processed in reductive atmospheres such that substrate oxidation is avoided while allowing the perovskite film phase to crystallize. This accomplishment has facilitated the pursuit of a new embedded capacitor technology offering compatibility with polymer printed wiring boards and capacitance densities in excess of 2.5 µF/cm2. This represents a distinct improvement beyond conventional foil-based capacitor strategies. Finally, two critical phenomena will be discussed: (1) the effect of grain size on the dielectric properties of barium titanate thin films and (2) the effect of the B-site substituent Zr on the lattice, microstructure, and dielectric properties. Most importantly, high processing temperatures have allowed for microstructural and dielectric properties similar to well-prepared bulk ceramics, including average grain diameters greater than 0.1 µm, relative permittivities in excess of 2000, and coercive fields below 10 kV/cm. These properties will be discussed in the context of bulk ceramic and thin film reference data and with regard to integration into printed wiring boards.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kim, D. J., Kaufman, D. Y., Streiffer, S. K., Lee, T. H., Erck, R. and Auciello, O., Materials Research Society Symposium Proceedings 748, 457 (2003).Google Scholar
2 Kim, T., Kingon, A. I., Maria, J. P. and Croswell, R. T., Journal of Materials Research 19, 2841 (2004).Google Scholar
3 Maria, J. P., Cheek, K., Streiffer, S., Kim, S. H., Dunn, G. and Kingon, A., Journal of the American Ceramic Society 84, 2436 (2001).Google Scholar
4 Mercado, P. G. and Jardine, A. P., Journal of Intelligent Material Systems and Structures 6, 62 (1995).Google Scholar
5 Saegusa, K., Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 36, 6888 (1997).Google Scholar
6 Zou, Q., Ruda, H. E. and Yacobi, B. G., Applied Physics Letters 78, 1282 (2001).Google Scholar
7 Zou, Q., Ruda, H. E., Yacobi, B. G., Saegusa, K. and Farrell, M., Applied Physics Letters 77, 1038 (2000).Google Scholar
8 Cheng, J. R., Zhu, W. Y., Li, N. and Cross, L. E., Applied Physics Letters 81, 4805 (2002).Google Scholar
9 Dawley, J. T. and Clem, P. G., Applied Physics Letters 81, 3028 (2002).Google Scholar
10 Dawley, J. T., Ong, R. J. and Clem, P. G., Journal of Materials Research 17, 1678 (2002).Google Scholar
11 Ihlefeld, J., Laughlin, B., Hunt-Lowery, A., Borland, W., Kingon, A. and Maria, J.-P., Journal of Electroceramics 14, 95 (2005).Google Scholar
12 Ihlefeld, J. F., Borland, W. and Maria, J.-P., Journal of Materials Research 10, 2838 (2005).Google Scholar
13 Laughlin, B., Ihlefeld, J. and Maria, J. P., Journal of the American Ceramic Society 88, 2652 (2005).Google Scholar
14 Losego, M. D., Jimison, L. H., Ihlefeld, J. F. and Maria, J.-P., Applied Physics Letters 86, 172906 1 (2005).Google Scholar
15 Burn, I. and Maher, G. H., Journal of Materials Science 10, 633 (1975).Google Scholar
16 Herbert, J. M., Proceedings of the Institution of Electrical Engineers-London 112, 1474 (1965).Google Scholar
17 Randall, C. A., Journal of the Ceramic Society of Japan 109, S2 (2001).Google Scholar
18 Sakabe, Y., American Ceramic Society Bulletin 66, 1338 (1987).Google Scholar
19 Barin, I. and Knacke, O., Thermochemical properties of inorganic substances, (Springer-Verlag, 1973).Google Scholar
20 Arlt, G., Hennings, D. and de With, G., Journal of Applied Physics 58, 1619 (1985).Google Scholar
21 Frey, M. H., Xu, Z., Han, P. and Payne, D. A., Ferroelectrics 206, 337 (1998).Google Scholar
22 Parker, C. B., Maria, J. P. and Kingon, A. I., Applied Physics Letters 81, 340 (2002).Google Scholar
23 ASTM E 112-96, Standard Test Methods for Determining Average Grain Size, (ASTM International, 2003).Google Scholar
24 Kell, R. C. and Hellicar, N. J., Acustica 6, 235 (1956).Google Scholar
25 Verbitskaia, T. N., Zhdanov, G. S., Venevtsev, I. N. and Soloviev, S. P., Soviet physics. Crystallography 3, 182 (1958).Google Scholar
26 Wada, S., Adachi, H., Kakemoto, H., Chazono, H., Mizuno, Y., Kishi, H. and Tsurumi, T., Journal of Materials Research 17, 456 (2002).Google Scholar
27 Dixit, A., Majumder, S. B., Dobal, P. S., Katiyar, R. S. and Bhalla, A. S., Thin Solid Films 447–448, 284 (2004).Google Scholar