Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:20:32.454Z Has data issue: false hasContentIssue false

Synthesis and Optical Properties of Phthalonitrile Oligomers

Published online by Cambridge University Press:  21 March 2011

ZoHong Tsai
Affiliation:
Center for Advanced Materials Department of Chemistry, University of Massachusetts LowellLowell, MA 01854-2881
Daniel J. Sandman
Affiliation:
Center for Advanced Materials Department of Chemistry, University of Massachusetts LowellLowell, MA 01854-2881
Get access

Abstract

Phthalonitrile and its derivatives react with Tin(II) reagents to give intensely colored linear oligomers. Structures are proposed for the oligomers based on elemental analysis, infrared, 1H and 13C spectra, and mass spectra. Stannous chloride has two kinds of properties, reducing reagent and Lewis acid. Tin(II) alkoxide initiates phthalonitrile oligomeriaztion when excess alkoxide is present. The mass spectrum indicates a chain length of at least a hexamer. In semi-empirical AM1 calculations, the helical conformation of a pentamer is indicated to be more stable than a linear conformation. The position of the electronic spectral maximum can be controlled by different kinds of reaction conditions and solution absorption and emission spectra were recorded.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Peebles, L. H. Jr.,, and Brandrup, J., Makromol. Chem., 98, 189 (1966).Google Scholar
2. Johns, I. B., Polymer Preprints ACS Div. of Polymer Chem., 5, 239 (1964).Google Scholar
3. Wöhrle, D., and Manecke, G., Makromol. Chem., 138, 283 (1970).Google Scholar
4. Liepins, R., Makromol. Chem., 118, 36 (1968).Google Scholar
5. Keller, T. M., and Gatz, R. F., Polymer Comm., 28, 334 (1987).Google Scholar
6. Keller, T. M., and Price, T. R., Polymer Comm., 26, 48 (1985).Google Scholar
7. Keller, T. M., Polymer Comm., 31, 229 (1990).Google Scholar
8. Keller, T. M., Polymer Comm., 28, 337 (1987).Google Scholar
9. Sandman, D. J., Rixman, M. A., and ai, Z. Ts, Polym. Mater. Sci. Eng., 80, 112 (1999).Google Scholar
10. Rixman, M. A., Sandman, D. J., Macromol., in press.Google Scholar
11. Amberger, E., and Kula, M.-R., Angew. Chem., 75(11), 476(1963).Google Scholar
12. Amberger, E., and Kula, M.-R., Ber., 96, 2562 (1963).Google Scholar
13. Honnick, W. D., and Zuckerman, J. J., Inorg. Chem., 17, 501 (1978).Google Scholar
14. Kuramoto, N., Itoh, Y., Kido, J., and Nagai, K., Pure Appl. Chem., A35,109 (1998).Google Scholar
15. Kuramoto, N., Sakoh, K., and Nagai, K., J. Appl. Polym. Sci., 38, 65 (1989).Google Scholar
16. Kuramoto, N., Takahashi, H., and Nagai, K., J. Macromol. Sci.- Chem., A26, 989 (1989).Google Scholar
17. Siegl, W. O., J. Heterocyclic Chem. 18, 1631 (1981).Google Scholar