Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T20:57:41.141Z Has data issue: false hasContentIssue false

Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles

Published online by Cambridge University Press:  25 April 2012

Morad F. Etier
Affiliation:
Institute for Materials Science, University of Duisburg-Essen, Essen, Germany
Vladimir V. Shvartsman
Affiliation:
Institute for Materials Science, University of Duisburg-Essen, Essen, Germany
Frank Stromberg
Affiliation:
Experimental Physics, Faculty of Physics, University of Duisburg-Essen, Duisburg, Germany
Joachim Landers
Affiliation:
Experimental Physics, Faculty of Physics, University of Duisburg-Essen, Duisburg, Germany
Heiko Wende
Affiliation:
Experimental Physics, Faculty of Physics, University of Duisburg-Essen, Duisburg, Germany
Doru C. Lupascu
Affiliation:
Institute for Materials Science, University of Duisburg-Essen, Essen, Germany
Get access

Abstract

Nanopowders of cobalt iron oxide (CoFe2O4) were successfully fabricated by the co-precipitation method followed by a technique to prevent particle agglomeration. Particle sizes were in the range of 24 to 44 nm. The size of cobalt iron oxide particles decreases with increasing the concentration of the precipitation agent. The crystal structure was confirmed by X-ray diffraction (XRD), the chemical composition by energy dispersive spectroscopy (EDS), and phase changes by thermogravimetric differential thermal analysis (TGA-TDA). The particle morphology was analyzed by scanning electron microscopy (SEM). Magnetic properties were investigated by SQUID magnetometry and Mössbauer spectroscopy. Being nearly monodisperse and non-agglomerated the prepared cobalt iron oxide powders are the base for synthesizing magnetoelectric composites embedded in a ferroelectric BaTiO3 matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yue, H., Yong, L., Chunlong, F., Zhi, Y., Lu, Z., Rui, X., Di, Y. and Jing, S., J. Appl. Phys. 108, 084312 (2010).Google Scholar
2. Franco, A. and e Silva, F. C., Appl. Phys Lett. 96, 172505 (2010).Google Scholar
3. Mohamed, R. M., Rashad, M. M., Haraz, F. A., and Sigmund, W., J. Magn. Mag. Mater. 322(14) 2058 (2010).Google Scholar
4. Callister, W. D., Material Science and Engineering, an Introduction, 5 th Ed. John Wiley & Sons, p. 684 (2000).Google Scholar
5. el-Okr, M. M., Salem, M. A., Salim, M. S., El-Okr, R. M., Ashoush, M., and Talaat, H. M., J. Magn. Magn. Mater. 323, 920 (2011).Google Scholar
6. Bozorth, R. M., Tilden, E. F., and Williams, A. J., Phys. Rev. 99, 1788 (1955).Google Scholar
7. Vaz, C. A. F., Hoffman, J., Ahn, C. H., and Ramesh, R., Adv. Mater. 22, 2900 (2010).Google Scholar
8. Duong, G. V., Groessinger, R., and Turtelli, R. S., J. Magn. Magn. Mater. 310, 1157 (2007).Google Scholar
9. Shvartsman, V. V., Alawneh, F., Borisov, P., Kozodaev, D., and Lupascu, D. C., Smart. Mater. Struct. 20, 075006 (2011).Google Scholar
10. Zhang, Y., Yang, Z., Yin, D., Liu, Y., Fei, C., Xiong, R., Shi, J., and Yan, G., J. Magn. Magn. Mater. 322, 3470 (2010).Google Scholar
11. Zi, Z., Sun, Y., Zhu, X., Yang, Z., Dai, J., and Song, W., J. Magn. Magn. Mater. 321, 1251 (2009).Google Scholar
12. Maaz, K., Mumtaz, A., Hasanain, S. K., and Ceylan, A., J. Magn. Magn. Mater. 308, 289 (2007).Google Scholar
13. Toksha, B. G., Shirsath, S. E., Patange, S. M., and Jadhav, K. M., Solid. State Commun. 147, 479 (2008).Google Scholar
14. Hanh, N., Quy, O. K., Thuy, N. P., Tung, L. D., and Spinu, L., physica B 327, 382 (2003).Google Scholar
15. Baldi, Giovanni, Bonacchi, Daniele, Comes Franchini, Mauro, Gentili, Denis, Lorenzi, Giada, Ricci, Alfredo and Ravagli, Costanza, Langmuir, 23, 40264028 (2007)Google Scholar
16. Natl. Bur. Stand. (U.S.) Monogr. 25, 9, 22, (1971).Google Scholar
17. Wohlfarth, E.P., Ferromagnetic Materials, Elsevier Science Publishers B.V. Vol. 3, p 196 (1982).Google Scholar
18. Persoons, R. M., De Grave, E., de Bakker, P. M. A., and Vandenberghe, R.E., Phys. Rev. B 47, 5894 (1993).Google Scholar
19. Vazquez-Vazquez, C., Lopez-Quintela, M. A., Bujan-Nunez, M. C., and Rivas, J., J. Nanopart. Res. 13, 1663 (2011).Google Scholar
20. Virden, A., Wells, S. and O’Grady, K., J. Magnt. Magnt. Mater. 316, 768 (2007).Google Scholar
21. Neel, L., J. Phys. Soc. Japan suppl. 17, 676 (1962).Google Scholar
22. Bedanta, S. and Kleemann, W., J. Phys. D: Appl. Phys. 42, 013001 (2009).Google Scholar