Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T12:35:19.083Z Has data issue: false hasContentIssue false

Synthesis and characterization of hybrid CdS/MEH-PPV nanocomposites for photovoltaic applications

Published online by Cambridge University Press:  03 August 2011

Anna M. Laera
Affiliation:
ENEA, Unità Tecnica Tecnologia dei Materiali Brindisi (UTTMATB), S.S. 7 “Appia” km 706, 72100 Brindisi, Italy
Vincenzo Resta
Affiliation:
ENEA, Unità Tecnica Tecnologia dei Materiali Brindisi (UTTMATB), S.S. 7 “Appia” km 706, 72100 Brindisi, Italy
Emanuela Piscopiello
Affiliation:
ENEA, Unità Tecnica Tecnologia dei Materiali Brindisi (UTTMATB), S.S. 7 “Appia” km 706, 72100 Brindisi, Italy
Monica Schioppa
Affiliation:
ENEA, Unità Tecnica Tecnologia dei Materiali Brindisi (UTTMATB), S.S. 7 “Appia” km 706, 72100 Brindisi, Italy
Leander Tapfer
Affiliation:
ENEA, Unità Tecnica Tecnologia dei Materiali Brindisi (UTTMATB), S.S. 7 “Appia” km 706, 72100 Brindisi, Italy
Get access

Abstract

Inorganic-organic nanocomposites, with II-VI or III-V semiconductor nanocrystals (NCs) embedded in semiconducting polymer matrix, are very promising materials for photovoltaic applications.

Here, we present an effective and easy synthesis procedure to obtain a hybrid nanocomposite with CdS NCs dispersed in poly[2-methoxy-5-(2-(2’-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) conjugated polymer. CdS NCs are synthesized directly within the matrix through the decomposition of a suitable unimolecular precursor dispersed homogeneously in the polymer.

We show that CdS NCs are formed at low annealing temperature avoiding structural damages and without affecting the functional properties of the MEH-PPV polymer. The NCs diameter ranges between 1.5nm and 4nm depending on the annealing temperature. In addition, no coalescence phenomena of CdS NCs were noticed in TEM observations even at very high particle density (40 wt %).

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sanchez, C., Judeinstein, P., J. Mater. Chem. 6, 511 (1996).Google Scholar
2. Sharp, K. G., Adv. Mater. 10, 1243 (1998).Google Scholar
3. Novak, B. M., Adv. Mater. 5, 422 (1993).Google Scholar
4. Colvin, V. L., Schalmp, M. C., Alivisatos, A. P., Nature 370, 354 (1994).Google Scholar
5. Greenham, N. C., Peng, X., Alivisatos, A. P., Phys. Rev. B 54, 17628 (1996).Google Scholar
6. Wang, L., Liu, Y., Jiang, X., Qin, D., Cao, Y., J. Phys. Chem. C 111, 9538 (2007).Google Scholar
7. Petrella, A., Tamborra, M., Cosma, P., Curri, M.L., Striccoli, M., Comparelli, R.,Agostiano, A., Thin Solid Films 516, 5010 (2008).Google Scholar
8. Rees, W. S., Krauter, G., J.Mater. Res. 11, 3005 (1996).Google Scholar
9. Resta, V., Laera, A. M., Piscopiello, E., Schioppa, M., Tapfer, L.,J. Phys. Chem. C 114, 17311 (2010).Google Scholar