Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T09:04:39.277Z Has data issue: false hasContentIssue false

Synthesis and characterization of ceramic composites of the binary system Ba0.75Sr0.25AlSi2O8 - Al2O3

Published online by Cambridge University Press:  01 March 2013

Jorge López-Cuevas
Affiliation:
CINVESTAV-IPN, Unidad Saltillo, Carretera Saltillo Monterrey, Km. 13.5, C.P. 25900, Ramos Arizpe, Coahuila, México.
Magaly V. Ramos-Ramírez
Affiliation:
CINVESTAV-IPN, Unidad Saltillo, Carretera Saltillo Monterrey, Km. 13.5, C.P. 25900, Ramos Arizpe, Coahuila, México.
José L. Rodríguez-Galicia
Affiliation:
CINVESTAV-IPN, Unidad Saltillo, Carretera Saltillo Monterrey, Km. 13.5, C.P. 25900, Ramos Arizpe, Coahuila, México.
Get access

Abstract

Ba0.75Sr0.25AlSi2O8 (SBAS) - Al2O3 composites, with SBAS/Al2O3 weight ratios of: (a) 90/10, (b) 70/30, and (c) 50/50, are in situ synthesized by reactive sintering at 900-1500°C/5h. The effect of mechanical activation of the precursor mixtures for 0, 4 or 8h in an attrition milling device on the microstructure and phase composition of the composites is studied. Only SBAS and Al2O3 phases are obtained at 1300-1500°C, independently of milling time. In general, the relative proportion of the desirable monoclinic SBAS (Celsian) phase increases in the materials with increasing milling time and sintering temperature, which is enhanced by their SrO content. The promotion of surface nucleation of the undesirable hexagonal SBAS (Hexacelsian) phase by mechanical activation results in a maximum Hexacelsian to Celsian conversion fraction of only 81.4%, obtained for composition 2 milled for 8h and sintered at 1500°C/5h. Under these synthesis conditions, an increment in the amount and size of the Al2O3 particles in the composites is detrimental for the Hexacelsian to Celsian conversion.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bansal, N.P., Hyatt, M.J. and Drummond, C.H. III, Ceram. Eng. Sci. Proc. 12, 12221234 (1991).CrossRefGoogle Scholar
Long-González, D., López-Cuevas, J., Gutiérrez-Chavarría, C.A., Pena, P., Baudin, C. and Turrillas, X., Ceram. Int. 36, 661672 (2010).CrossRefGoogle Scholar
Lin, H.C. and Foster, W.R., Am. Mineral. 53, 134144 (1968).Google Scholar
Sirazhiddinov, N.A., Arifov, P.A. and Grebenshchikov, R.G., Inorg. Mater. 8, 756 (1972).Google Scholar
Bansal, N.P., J. Mater. Sci. 33, 47114715 (1998).CrossRefGoogle Scholar
Semler, C.E. and Foster, W.R., J. Am. Ceram. Soc. 52, 679680 (1969).CrossRefGoogle Scholar
Dear, P.S., Bull. Virgina Polytechnic Inst. 50, 8 (1957).Google Scholar
Zhang, C., Zhang, F., Cao, W.S. and Chang, Y.A., Intermetallics 18, 14191427 (2010).CrossRefGoogle Scholar
Fu, Y.-P., Chang, C.-C., Lin, C.-H. and Chin, T.-S., Ceram. Int. 30, 4145 (2004).CrossRefGoogle Scholar
Criado, J.M., Diánez, M.J. and Morales, J., J. Mater. Sci. 39, 51895193 (2004).CrossRefGoogle Scholar
Boŝković, S., Kosanović, D., Bahloul-Hourlier, Dj., Thomas, P. and Kiss, S.J., J. Alloy. Compd. 290, 230235 (1999).CrossRefGoogle Scholar
Boŝković, S., Kosanović, Dj. and Zec, S., Powder Technol. 120, 194198 (2001).CrossRefGoogle Scholar
Limeng, L., Feng, Y., Haijiao, Z., Jie, Y. and Zhiguo, Z., Scripta Mater. 60, 463466 (2009).CrossRefGoogle Scholar
López-Cuevas, J., Long-González, D. and Gutiérrez-Chavarría, C.A. in Advanced Structural Materials-2011, edited by Calderon, H.A., Salinas-Rodriguez, A. and Balmori-Ramirez, H., (Mater. Res. Soc. Symp. Proc. 1373, Cambridge University Press, N.Y., 2012) pp. 4352.Google Scholar