Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T20:34:41.901Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Antiferromagnetic Kmnf3 Nanoparticles

Published online by Cambridge University Press:  21 February 2011

C. Sangregorio
Affiliation:
Advanced Materials ResearchInstitute University of New Orleans, New Orleans LA USA
E. E. Carpenter
Affiliation:
Advanced Materials ResearchInstitute University of New Orleans, New Orleans LA USA
C. J. O'connor
Affiliation:
Advanced Materials ResearchInstitute University of New Orleans, New Orleans LA USA
Get access

Abstract

The magnetic properties of nanosized antiferromagnetic particles of KMnF3 are presented. The particles were synthesized using the microemulsion technique, i.e. by using the aqueous core of reverse micelles as constrained microreactors for the precipitation of the particles. The structural characterization of the samples, accomplished by TEM and XRD, reveal that the samples consist of cubic-shaped, crystalline KMnF3 nanoparticles of uniform size. Control over the average size of the particles was achieved by changing the reaction time. Four different samples of average size in the range 13-35 nm were prepared. DC magnetic susceptibility measurements revealed superparamagnetic behavior of the particles. Hysteresis loops measured after field cooling the samples through TN were shifted. The shift is ascribed to the exchange coupling between the antiferromagnetic core of the particles and the uncompensated spin shell surrounding it.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schweneder, A. R., Chimica 46 69 (1992)Google Scholar
2. Gee, A. D.Cell Separation Methods and Applications” Eds. Recktenwald, D. and Radbrush, A., pp. 175 Marcel Dekker, Inc., New York USA 1997.Google Scholar
3. Nanomaterials: Synthesis, Properties and Applications Eds. Edelstein, A. S. and Cammarata, R. C.; Institute of Physics Publishing, Bristol PA (1996).Google Scholar
4. Néel, L., Compt. Rend. (Paris), 252, 4075 (1961).Google Scholar
5. Néel, L. Proc. Int. Conf Magn. Crys. Tokyo, 1961, J. Phys. Soc. Jpn. 17 676 (1962)Google Scholar
6. Cohen, J.; Creer, K. M.; Pauthenet, R.; Srivastava, K.; Proc. Int. Conf. Magn. Crys. Tokyo, 1961, J. Phys. Soc. Jpn. 17 685 (1962)Google Scholar
7. Creer, K. M.; Proc. Int. Conf. Magn. Crys. Tokyo, 1961, J. Phys. Soc. Jpn. 17 690 (1962)Google Scholar
8. Gider, S. Awschalom, D. D., Douglas, T., Mann, S., Chapara, M. Science 268 77 (1995)Google Scholar
9. Barbara, B.; Chudnovsky, E. M.; Phys. Lett. 145A 205 (1990)Google Scholar
10. Schieber, M. MExperimental Magnetochemistry” Ed. Wohlfarth, E. P. John Wiley & Sons. Inc. New York 1967 Google Scholar
11. Pillai, V.; Kumar, P.; Hou, M. J.; Ayyub, P.; Shah, D. O.; Adv. Colloid Interface Sci. 55 241 (1995)Google Scholar
12. Moumen, N.; Pileni, M. P. Chem. Mater. 8 1128 (1996)Google Scholar
13. Roth, M., Hempelmann, R., Chem. Mater., 10, 78 (1998).Google Scholar
14. Kodama, R. H., Makhlouf, S. A., Berkowitz, A. E., Phys. Rev. Lett., 79, 1393 (1997)Google Scholar
15. Sako, S.; Umemura, Y.; Oshima, K.; Sakai, M.; Bandow, S.; J. Phys. Soc. Jpn. 65 280 (1995)Google Scholar
16. Meiklejohn, W. H., Bean, C. P., Phys. Rev. 102 1413 (1956)Google Scholar