Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T03:39:30.890Z Has data issue: false hasContentIssue false

Synchrotron X-ray Micro-diffraction Analysis on Microstructure Evolution in Sn under Electromigration

Published online by Cambridge University Press:  01 February 2011

Albert T. Wu
Affiliation:
Dep. of Materials Science and Engineering, UCLA, Los Angeles, CA 90095 Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
N. Tamura
Affiliation:
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
J. R. Lloyd
Affiliation:
T. J. Watson Research Center, IBM, Yorktown Heights, NY 10598
C. R. Kao
Affiliation:
Chemical & Materials Engineering, National Central University, Chungli, Taiwan
K. N. Tu
Affiliation:
Dep. of Materials Science and Engineering, UCLA, Los Angeles, CA 90095
Get access

Abstract

White Sn (β-Sn) thin film stripe shows a voltage drop about 10% when subjected to electromigration testing. Since β-Sn has anisotropic crystal structure, it possesses different resistivity along a-, b- and c axis. The direction of the axes determines the resistance in each grain. Under electromigration, low resistance grain tends to grow in the expense of the neighboring high resistance grains. The changes of grain orientation in the Sn stripe before and after electromigration was studied by synchrotron x-ray microdiffraction (∼1νm diameter) to achieve grain-by-grain analysis. Grain growth involves grain boundary migration and rotation of neighboring high resistance grains. A model different from normal grain growth is proposed to describe the condition and mechanism of microstructural evolution under electromigration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ho, P. S. and Kwok, T., Rep. Prog. Phys., 52, 301 (1989).Google Scholar
[2] Rosenberg, R., Edelstein, D. C., Hu, C. K., and Rodbell, K. P., Annual Review Mater. Sci., 30, 229. (2000).Google Scholar
[3] Tu, K. N., J. Appl. Phys., 94, 5451. (2003).Google Scholar
[4] Lloyd, J, J. Appl. Phys. 94, 6483. (2003).Google Scholar
[5] Wu, A. T., Tu, K. N., Lloyd, J. R., Tamura, N., Valek, B. C., and Kao, C. R., Appl. Phys. Lett., 85, 2490. (2004).Google Scholar
[6] MacDowell, A. A., Celestre, R. S., Tamura, N., Spolenak, R., Valek, B., Brown, W. L., Bravman, J. C., Padmore, H. A., Batterman, B. W., and Patel, J. R., Nuclear Inst. and Meth., A 467, 936. (2001).Google Scholar
[7] Tamura, N., MacDowell, A. A., Celestre, R. S., Padmore, H. A., Valek, B., Bravman, J. C., Spolenak, R., Brown, W. L., Marieb, T., Fujimoto, H., Batterman, B. W., and Patel, J. R., Appl. Phys. Lett., 80, 3724. (2002).Google Scholar
[8] Dieter, G. E., “Mechanical Metallurgy,” SI Metric edition, McGraw-Hill Book Company, UK (1988).Google Scholar
[9] Blech, I. A. and Herring, C., Appl. Phys. Lett., 29, 131. (1976).Google Scholar
[10] Blech, I. A., J. Appl. Phys., 47, 1203. (1976).Google Scholar