Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T05:37:05.388Z Has data issue: false hasContentIssue false

Synchrotron Small Angle X-ray Scattering Study of Melt Crystallized Polymers

Published online by Cambridge University Press:  10 February 2011

Georgi Georgiev
Affiliation:
Dept. of Physics and Astronomy, Tufts University, Science and Technology Center, Medford, MA 02155
Patrick Shuanghua Dai
Affiliation:
Dept. of Physics and Astronomy, Tufts University, Science and Technology Center, Medford, MA 02155
Elizabeth Oyebode
Affiliation:
Dept. of Physics and Astronomy, Tufts University, Science and Technology Center, Medford, MA 02155
Peggy Cebe*
Affiliation:
Dept. of Physics and Astronomy, Tufts University, Science and Technology Center, Medford, MA 02155
Malcolm Capel
Affiliation:
Biology Dept., Brookhaven National Laboratory, Upton, NY 11973
*
* To whom correspondence should be addressed
Get access

Abstract

In this paper we report a synchrotron small angle x-ray scattering (SAXS) study of development of structure in semicrystalline Poly(Ether Ether Ketone), (PEEK) and an 80/20 blend with amorphous Poly(Ether Imide) (PEEK/PEI). Samples were treated to dual stage melt crystallization scheme involving initial isothermal crystallization at T1 followed by a second isothermal period at T2 (T1 < T2). Intensity of small angle scattering was measured in real-time. Structural parameters characterizing the lamellar thickness, 1c, long period, L, and SAXS invariant were deduced from the one-dimensional electron density correlation function assuming an ideal, two-phase structural model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jonas, A., Russell, T., Yoon, D.. Macromolecules, 28, 8491 (1995).10.1021/ma00129a005Google Scholar
2. Hsiao, B., Sauer, B.. J. Polym. Sci., Polym. Phys. Ed, 31, 901 (1993).10.1002/polb.1993.090310801Google Scholar
3. Jonas, A., Ivanov, D., Yoon, D., Macromolecules, 31, 5352 (1998).10.1021/ma9711607Google Scholar
4. Hsiao, B., Verma, R., Sayer, B., J. Macromol. Sci., Phys., B37(3), 365 (1998).10.1080/00222349808220478Google Scholar
5. Chen, H., Porter, R., J. Polym. Sci. B:Polymer Physics, 31, 1845 (1993).10.1002/polb.1993.090311217Google Scholar
6. Hsiao, B., Gardner, K., Wu, D., Chu, B.. Polymer, 34, 3996 (1993).10.1016/0032-3861(93)90659-XGoogle Scholar
7. Kruger, K., Zachmann, H.. Macromolecules, 26, 5202 (1993).10.1021/ma00071a035Google Scholar
8. Blundell, D. J., Osborn, B. N.. Polymer, 24, 953 (1983).10.1016/0032-3861(83)90144-1Google Scholar
9. Georgiev, G., Dai, P. S., Oyebode, E., Cebe, P., Capel, M., Proceedings of the American Chemical Society Division of Polymeric Materials: Science and Engineering, 78, 215 (1998).Google Scholar
10. Strobl, G. R., Schneider, M.. J. Polym. Sci., Polym. Phys. Ed., 18, 1343 (1980).10.1002/pol.1980.180180614Google Scholar
11. Matlab Reference Guide, The Mathworks Inc., Natick, 1996.Google Scholar
12. Lu, S. X., Cebe, P., Capel, M.. Macromolecules, 30(20), 6243 (1997).10.1021/ma961600eGoogle Scholar
13. Hsiao, B., Sauer, B., Verma, R., Zachmann, H., Seifert, S., Chu, B., Harney, P.. Macromolecules, 28, 6931 (1995).10.1021/ma00124a032Google Scholar
14. Material Data Sheet for General Electric ULTEM (PEI), Boldeker Plastics, (1999).Google Scholar