Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T12:03:13.435Z Has data issue: false hasContentIssue false

Surface Structure Characterization and Electrochemical Characteristics of Carbon-Coated Lithium Iron Phosphate (C-LiFePO4) Particles

Published online by Cambridge University Press:  12 April 2012

Xiangcheng Sun
Affiliation:
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
Kai Sun
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 US
Bo Cui
Affiliation:
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
Get access

Abstract

Carbon-coated lithium iron phosphate (C-LiFePO4) particles have been synthesized by a solid-state reaction process. Particles surface morphology, olivine-type phase structures and the carbon shell-core structures are investigated in details by transmission electron microscopy (TEM, HRTEM) imaging and electron diffraction (SAED) patterns. Homogenous features of carbon coating of the LiFePO4 particles surface are obviously revealed. HR-TEM imaging and X-ray photoelectron spectroscopy (XPS) confirmed an amorphous sp2 type conducting coating layer on the surface of LiFePO4 particles. Particles shape and size showed the clear single-crystal nature of the phospho-olivine type structures with the rough spherical features of 50-250 nm size range. The characteristics of sp2 type carbon-coating on the LiFePO4 particles surfaces allows improving the electrical conductivity and reducing the diffusion path of the lithium ions, as directly evidenced from electrochemical tests of charge-discharge cycling.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Padhi, A. K., Nanjundaswamy, K. S., and Goodenough, J. B., J. Electrochem. Soc. 144, 1188 (1997);Google Scholar
2. Delmas, C., Maccario, M., Croguennec, L., Le Cras, F. and Weill, F., Nature Mater. 7, 665 (2008)Google Scholar
3. Thackeray, M., Nature Mater. 1, 81(2002);Google Scholar
4. Ravet, N., Abouimrane, A., and Armand, M., Nature Mater. 2, 702 (2003)Google Scholar
5. Recham, N., Chotard, J. N., Dupont, L., Delacourt, C., Walker, W., Armand, M., and Tarascon, J. M., Nature Mater. 9, 68 (2010)Google Scholar
6. Huang, H., Yi, S. C., and Nazar, L. F., Electrochem. Solid State Lett. 4, A170 (2001)Google Scholar
7. Sun, C., Rajasekhara, S., Goodenough, J. B., and Zhou, F., J. Am. Chem. Soc. 133, 2132 (2011);Google Scholar
8. Chung, S. Y., Kim, Y. M., and Choi, S. Y., Adv. Funct. Mater. 20, 4219 (2010)Google Scholar
9. Wang, B. F., Qiu, Y. L., and Yang, L., Electrochem. Commun. 8, 1801 (2006)Google Scholar
10. Fey, G. T. K., and Lu, T. L., J. Power Sources 178, 807 (2008)Google Scholar
11. Lee, K. T., and Cho, J., Nano Today, 6, 28 (2011)Google Scholar
12. Yamada, A., Chung, S. C., and Hinokuma, K., J. Electrochem. Soc. 148, A224 (2001)Google Scholar
13. Piana, M., Cushing, B., Goodenough, J. B., and Penazzi, N., Solid State Ionics 175, 233 (2004)Google Scholar
14. Meligrana, G., Gerbaldi, C., Tuel, A., Bodoardo, S., and Penazzi, N., J. Power Sources 160, 516 (2006)Google Scholar
15. Choi, D., and Kumta, P.N., J. Power Sources 163, 1064 (2007)Google Scholar
16. Lee, S. B., Cho, S. H., Cho, S. J., Park, G. J., Park, S. H., and Lee, Y. S., Electrochem. Commun. 10, 1219 (2008)Google Scholar
17. Zheng, J. C., Li, X. H., Wang, Z. X., and Zhou, S. Y., J. Power Sources 184, 574 (2008)Google Scholar
18. Wang, Y.G., Wang, Y.R., Hosono, E., Wang, K.X., and Zhou, H. S., Angew. Chem. Int. Ed. 47, 7461(2008)Google Scholar
19. Toprakci, O., Toprakci, H. A. K., Ji, L.W., and Zhang, X.W., KONA Powder and Particle Journal, 28, 50 (2010)Google Scholar
20. Doeff, M. M., Wilcox, J. D., Kostecki, R., and Lau, G., J. Powder Sources, 163, 180 (2006);Google Scholar
21. Sun, Q., Luo, J. Y, and Fu, Z. W., Electrochem. Solid State Lett. 14, A151 (2011)Google Scholar
22. Kuo, H. T., Chan, T. S., Bagkar, N. C., Liu, R. S., Shen, C. H., Shy, D. S., Xing, X. K., and Lee, J.F., Electrochem. Solid State Lett. 12, A111 (2009)Google Scholar
23. Oh, S. W., Myung, S.T., Bang, H. J., Yoon, C. S., Amine, K., and Sun, Y. K., Electrochem. Solid State Lett. 12, A181 (2009)Google Scholar
24. Sinha, N. N., Shivakumara, C., and Munichandraiah, N., ACS Appl. Mater. Interfaces, 2, 2031 (2010);Google Scholar
25. Yu, F., Zhang, J. J., Yang, Y. F., and Song, G. Z., J. Mater. Chem. 19, 9121 (2009)Google Scholar
26. Zaghib, K., Mauger, A., Gendron, F., and Julien, C.M., Chem. Mater. 20, 462 (2008)Google Scholar
27. Wang, Y., He, P., and Zhou, H. S., Energy Environ. Sci. 4, 805 (2011)Google Scholar