Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T03:43:02.606Z Has data issue: false hasContentIssue false

Surface Smoothing upon Deposition of Nanoparticles on Single Crystalline Substrates

Published online by Cambridge University Press:  10 February 2011

C. G. Zimmermann
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, IL 61801 -Institut für Physik, Universität Augsburg, D-86135 Augsburg
C. P. Liu
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, IL 61801
M. Yeadon
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, IL 61801
K. Nordlund
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, IL 61801
J. M. Gibson
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, IL 61801
R. S. Averback
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, IL 61801
U. Herr
Affiliation:
-Institut für Physik, Universität Augsburg, D-86135 Augsburg
K. Samwer
Affiliation:
-Institut für Physik, Universität Augsburg, D-86135 Augsburg
Get access

Abstract

Surfaces with artificial roughness were generated by deposition of nanoparticles on single crystalline substrates. Nanoparticles with an average size ≈ 15 nm were produced by inert gas condensation and deposited in situ on the substrate mounted inside a modified ultra high vacuum (UHV) transmission electron microscope (TEM). We have investigated the smoothing behavior on annealing based on the difference in surface energies between cluster and substrate and their heat of mixing. The cluster substrate combination Co/Cu(100) was chosen as a model system in which the cluster has a significantly higher surface energy than the substrate. Upon deposition at 600 K, the clusters do not remain on the surface, but rather burrow into the substrate. This is confirmed by a detailed strain analysis of the particles. Nanoparticles in the system Ge/Si(100) in contrast have a lower surface energy than the substrate and are completely miscible. The particles assume the substrate orientation around 700 K. At 900 K coherent islands form which are arranged in clusters of 4 in the form of a square. The reason for this previously unobserved pattern is not yet understood.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Herring, I. C., in The Physics of Powder Metallurgy, edited by Kingston, E. (McGraw-Hill, New York, 1951), p. 143.Google Scholar
2. Mullins, W. W., J. Appl. Phys. 30, 77(1959).Google Scholar
3. Yeadon, M., Ghaly, M., Yang, J. C., Averback, R. S. and Gibson, J. M., Appl. Phys. Let. 73, 3208(1998);Google Scholar
4. Yeadon, M., Yang, J. C., Averback, R. S., Bullard, J. W., Olynick, D. L. and Gibson, J. M., Appl. Phys. Lett 71, 1631(1997).Google Scholar
5. McDonald, M. L., Gibson, J. M. and Unterwald, F. C., Rev. Sci. Instrum. 60, 700(1989).Google Scholar
6. Olynick, D. L., Gibson, J. M. and Averback, R. S., Mater. Sci. Eng. A 204, 54(1995).Google Scholar
7. Zimmermann, C. G., Yeadon, M., Nordlund, K., Gibson, J. M., Averback, R. S., Herr, U. and Samwer, K., Phys. Rev. Lett. 83, 1163(1999).Google Scholar
8. Ashby, M. F. and Brown, L. M., Phil. Mag. 8, 1083(1963).Google Scholar
9. Miller, P. D., Liu, C. P. and Gibson, J. M., submitted to Ultramicroscopy.Google Scholar
10. Miller, P. D., Liu, C. P., Henstrom, W. L., Gibson, J. M., Huang, Y., Zhang, P., Kamins, T. I., Basile, D. P. and Williams, R. S., Appl. Phys. Lett. 75, 46(1999).Google Scholar
11. Zimmermann, C. G., Yeadon, M., Nordlund, K., Gibson, J. M., Averback, R. S., Herr, U. and Samwer, K, submitted to Phys. Rev. B.Google Scholar
12. Hammer, M., LeGoues, F. K., Tersoff, J., Reuter, M. C., Tromp, R. M., Surf. Sci. 349, 129(1996).Google Scholar